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Abstract—In the past, researchers have developed a number
of popular taint-analysis approaches, particularly in the context
of Android applications. Numerous studies have shown that
automated code analyses are adopted by developers only if they
yield a good “signal to noise ratio”, i.e., high precision. Many
previous studies have reported analysis precision quantitatively,
but this gives little insight into what can and should be done to
increase precision further.

To guide future research on increasing precision, we present a
comprehensive study that evaluates static Android taint-analysis
results on a qualitative level. To unravel the exact nature of taint
flows, we have designed COVA, an analysis tool to compute
partial path constraints that inform about the circumstances
under which taint flows may actually occur in practice.

We have conducted a qualitative study on the taint flows
reported by FlowDroid in 1,022 real-world Android applications.
Our results reveal several key findings: Many taint flows occur
only under specific conditions, e.g., environment settings, user
interaction, I/O. Taint analyses should consider the application
context to discern such situations. COVA shows that few taint
flows are guarded by multiple different kinds of conditions
simultaneously, so tools that seek to confirm true positives
dynamically can concentrate on one kind at a time, e.g., only
simulating user interactions. Lastly, many false positives arise due
to a too liberal source/sink configuration. Taint analyses must be
more carefully configured, and their configuration could benefit
from better tool assistance.

Index Terms—taint analysis, path conditions, Android

I. INTRODUCTION

The past few years have brought to light a wealth of
diverse taint-analysis approaches, most of them static and
for the Android platform [1]–[6]. Static taint analysis is not
a trivial task, due to the static abstractions and sometimes
approximations it requires. Static taint analysis for Android is
particularly challenging since one must consider some rather
unique features of Android: Android apps are not standalone
applications but rather plugins for the Android framework.
As such they have a distinct life cycle, and often numerous
callbacks that respond to various environmental stimuli such as
button clicks or location changes. Android apps often need to
operate correctly for different platform versions and devices,
which is why they often contain code that is conditionalized
with respect to various environment parameters. In Android it
is a common and recommended practice, for instance, to obtain
backward compatibility by probing the platform version.

Existing studies show that code analysis tools are most
likely to be adopted if they yield high precision, i.e., a low rate
of false positives [7], [8], which is hard given the challenges
named above. While all existing papers proposing those tools
do comprise an insightful evaluation, often even on a large
scale, these evaluations are virtually all entirely quantitative.
As such, they do permit one to conclude how many taint-
flow warnings a given taint-analysis tool reports on a given
benchmark set, but not of which nature those taint flows
exactly are, i.e., under which conditions they can occur at
runtime, and what could be done further to discard potentially
remaining false positives within those taint flows. The lack of
such qualitative data currently hinders progress in upcoming
directions of research. Researchers are investigating novel “hy-
brid” combinations of static with dynamic analysis which, for
instance, seek to dynamically confirm static-analysis findings
by computing an actual witness path exposing the taint flow
at runtime [9]–[14]. To guide such research, we present the
first study that evaluates static Android taint-analysis results
at a qualitative level. In particular, this study seeks to identify
how taint flows are conditioned on. . .

• Environment settings (platform versions, country, etc.):
Malicious applications can leak data based on environ-
ment settings [15], [16].

• User interactions: Previous work [17] has shown that
many Android apps leak data as a result of user actions
on certain widgets in the apps.

• I/O operations: Leaks that depend on specific inputs are
difficult to trigger dynamically [12], [18], [19], since the
search space is often very large.

To facilitate this study, we have implemented COVA, a
static analysis tool that computes partial path constraints.
COVA can be configured to track information about the three
factors named above, and thus the circumstances under which
taint flows may actually occur in practice.

We conducted a case study of the most common taint
flows (data leaks) reported by the static taint-analysis tool
FlowDroid [1] from 1,022 real-world Android apps. During
manual inspection of the sampled taint flows, we observed
some default sources and sinks provided by FlowDroid to
be inappropriate: they were causing only false positives, and
in large quantities. Unfortunately, we found this to impact
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the empirical evaluation of many previously published pa-
pers [20]–[28].

After having eliminated these false positives, we classified
the reported taint flows with COVA, based on the three factors
mentioned above. Our study reveals that at least 14% of the
flows are conditioned on at least one of the three factors
(environment, interaction, I/O), but also that few flows are
conditioned on multiple factors at the same time. This means
that hybrid analysis tools must be able to deal with those
factors, but for each factor one can likely build specialized
support.

Of special interest to developers are taint flows that are
not conditioned on the three factors above and which are
also are intra-procedural: those “low-hanging fruits” can be
identified purely statically, and are likely to be both correct
and actionable to the developers. Static analysis tools should
thus aim to prioritize their reporting. We find that 3.5% of all
taint flows fall into this category.

To summarize, this paper presents the following original
contributions:
• COVA, a static analysis tool to compute path constraints.
• A micro-benchmark to assess COVA and similar tools.
• A COVA-supported qualitative study of taint flows from

1,022 Android apps.
The insights drawn from the study are:
• Source/sink configurations are essential to precision. Pre-

vious bad defaults have caused vast amounts of false
positives.

• Many inter-procedural taint flows in Android applications
are conditioned on user interactions, and fewer on en-
vironment configurations or I/O operations. The three
categories are almost disjoint. This is good news: one
can build effective hybrid analysis tools that specialize
on either category.

• Reported intra-procedural taint flows are most likely to be
true positives. One should thus prioritize their reporting.

We make COVA and the Android apps we analyzed publicly
available at:

https://github.com/secure-software-engineering/COVA.git

The rest of this paper is organized as follows: we first motivate
the need for the tool COVA, then explain its design, and lastly
our experimental study.

II. A MOTIVATING EXAMPLE

Figure 1 shows an Activity of an Android application
that contains a data leak—a simplified example. The activity
first reads the unique device identifier (Line 8), stores it
into variable deviceId before method onClick uses the
variable and sends an SMS containing the identifier to the
phone number “+1234” (Line 15).

State-of-the-art static taint-analysis tools for Android, e.g.,
FlowDroid [1], AmanDroid [2] or DroidSafe [3], are capable
of detecting such leaks with a high precision. The tools de-
liver highly precise context-, field-, and flow-sensitive results.

However, as we observed during our study, these precision
dimensions are insufficient when trying to understand how and
when apps leak data.

While any of the mentioned taint-analysis tools reports the
leak in Figure 1, none of the tools reports that the leak can only
occur under a specific execution path. The tools are not path-
sensitive [29]. The app leaks the device identifier only when
it executes the source and sink statements. Their execution
depends on three path conditions [30]. First, the app must
run the correct Android SDK version (Line 7), second, the
user must trigger the app to execute the onClick callback
by pressing a button (Line 11), and third, a special system
feature has to be enabled on the execution device (Line 14).

For an automatic qualitative evaluation of the path condi-
tions of data leaks reported by the taint-analysis tools, we
implemented the static analysis tool COVA. COVA computes
a constraint map which associates with each statement of a
program the path conditions required to execute the statement.

Figure 2 describes the workflow of COVA when used
with a taint-analysis tool. COVA accepts as input an An-
droid application in bytecode format and a set of pre-defined
constraint-APIs. COVA then computes the path conditions,
i.e., the constraint map, which depend on values from the
constraint-APIs. Instead of computing all path conditions for
the program (which is practically infeasible), COVA focuses
on propagating values of the constraint-APIs and path con-
ditions dependent on these. The constraint map computed by
COVA can be used to refine the data leaks reported by an
existing taint-analysis tool, i.e., leaks can be reported with
path constraints. Although we applied COVA to taint analysis,
COVA is applicable to any other client analysis that can
benefit from path information.

To understand, for instance, the leak in Figure 1,
it suffices to track the following constraint-APIs:
Build.VERSION.SDK_INT, OnClickListener.on-
Click and PackageManager.hasSystemFeature.
COVA performs a context-, flow-, and field-sensitive data-
flow analysis starting from the entry point of the program.
In Figure 1, the entry point of the activity is onCreate
and it is always executable, thus the statement at Line 5 has
the initial constraint TRUE. At each reachable invocation of
a constraint-API, COVA generates a tainted data-flow fact,
simply referred to by taint. In Figure 1, COVA propagates the
taint (sdk, TRUE, SDK) starting from Line 19. The symbol
sdk is the variable containing the value returned from the
constraint-API; the second entry TRUE is the constraint
under which the data-flow fact at the statement is reachable;
SDK stands for the symbolic value of the static field
Build.VERSON.SDK_INT. COVA then propagates the
taints along the inter-procedural control-flow graph (ICFG) of
the program and creates constraints over the symbolic values
of taints whenever taints are used in conditional statements.

For instance, the return value of the method
isRightVersion() is true when the SDK version
is at most 26. The Android app further branches (indirectly)
based on the version at the if-statement in Line 7. The
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1 public class LeakyApp extends Activity {
2 ...
3 @Override
4 protected void onCreate(Bundle savedInstanceState) {
5 String deviceId = ” ”;
6 boolean z = isRightVersion();
7 if (z)
8 deviceId = telephonyManager.getDeviceId(); // source
9 button.setOnClickListener(new View.OnClickListener() {

10 @Override
11 public void onClick(View view) {
12 PackageManager pm = getApplicationContext().getPackageManager();
13 boolean t = pm.hasSystemFeature(”android.hardware.telephony”));
14 if (t)
15 smsManager.sendTextMessage(”+1234”, null, deviceId, null, null); // sink
16 }});
17 }
18 private boolean isRightVersion() {
19 int sdk = Build.VERSION.SDK INT;
20 if (sdk > 26)
21 return false;
22 else
23 return true;
24 }}

(sdk, TRUE, SDK)

(ret, SDK > 26, false)

(ret, SDK ≤ 26, true)

(z, SDK > 26, false) (z, SDK ≤ 26, true)

(t, CLICK, TELEPHONY)

TRUE
TRUE
TRUE

SDK ≤ 26

TRUE

TRUE
CLICK
CLICK
CLICK

CLICK∧TELEPHONY
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Fig. 1. A motivating example.
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Fig. 2. The workflow of applying COVA to taint-analysis results.

constraint map of COVA captures these path conditions.
COVA computes the taint (ret, SDK ≤ 26, true) for the
statement in Line 23; the taint encodes that the return value
ret equals true when the version is SDK ≤ 26. This
taint propagates back to the call site in Line 6 as taint (z,
SDK ≤ 26, true).

In early results of our qualitative study, we observed many
data leaks to depend on callbacks of user interfaces which
motivated us to symbolically represent them in COVA. Tech-
nically, COVA creates a constraint CLICK at the callback
OnClickListener.onClick and propagates this con-
straint to all statements reachable from this method. CLICK
is a symbolic value representing a button click, only when a
user clicks the button the statements become reachable.

COVA propagates all taints from all constraint-APIs and
simultaneously computes a constraint for each reachable state-
ment based on available taints at the current statement. Once
the data-flow propagation is completed, the constraint map is

also computed.
In this paper, we enrich the leak-reports by FlowDroid

with the constraints computed by COVA. We compute the
constraint of a leak, its leak-constraint, according to the
logical formula Csource∧Csink, in which Csource denotes the
constraint under which the source statement may be executed,
and Csink the same for the sink. In the example, the resulting
leak-constraint is SDK ≤ 26 ∧ CLICK ∧ TELEPHONY. This
leak-constraint is used later in our study to classify the taint
flows.

III. COMPUTING THE CONSTRAINT MAP

Computing the constraint map as shown in Figure 1 is non-
trivial. The execution of a branch may simultaneously depend
on two or more values of some constraint-APIs. A static
analysis must jointly propagate all values to compute the final
constraint for a branch. As the values have to be propagated
jointly, the analysis is non-distributive [31]. Furthermore, each
value of a constraint-API must be propagated throughout the
whole program, since values can flow to fields of objects be-
fore the fields are re-accessed elsewhere and aliasing relations
must be computed.

We implemented the analysis within the data-flow frame-
work VASCO [32], which solves non-distributive inter-
procedural data-flow problems in a highly precise (context-
and flow-sensitive) manner. VASCO propagates data-flow facts
(elements of a data-flow domain D) from statement to state-
ment along the inter-procedural control-flow graph (ICFG) of
the program. The flow functions accept a data-flow fact d ∈ D
and a control-flow edge 〈n,m〉 of the ICFG as input, and
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output a new value d′ ∈ D. Similarly to IFDS [33], VASCO
differentiates between the following four kinds of functions:
• NORMALFLOWFUNC: handles intra-procedural flows

where n is not a call site.
• CALLLOCALFLOWFUNC: handles intra-procedural flows

where n is a call site. It propagates the values of local
variables not used at the call site.

• CALLENTRYFLOWFUNC: handles an inter-procedural
flow from call site n to the first statement m of a callee.
It typically maps actual method arguments to formal
parameters.

• CALLEXITFLOWFUNC: it is the inverse of CALLEN-
TRYFLOWFUNC.

A. Analysis Domain

The domain D for our analysis in VASCO is two-
dimensional: C × 2T, where C is a constraint domain and T
is a taint domain. We use ⊥ ∈ D to denote an unknown fact.
Consider data-flow fact (C, T ) ∈ C×2T to hold at statement n,
then C is the constraint under which statement n is reachable.
We seed the data-flow propagation with the fact (TRUE, ∅)
at the entry point of the application. The constraint is TRUE,
as the entry point statement is always reachable. At the entry
point, the set T is the empty set as no constraint-API call has
been encountered.

In general, T is the set of taints generated at constraint-APIs
reaching statement n. Each taint is a triple (a, c, v) ∈ T and
consists of an access path (a local variable followed by a finite
sequence of fields [34]). The access path a encodes how the
value of the constraint-API is heap-referenceable at statement
n. Value v holds the actual value of a. In the case it is the
return value of a constraint-API, it is represented symbolically,
if possible concrete values of primitive types are traced. The
constraint c describes under which conditions a has the value
v. Note, at a statement n the constraint c of a taint within
the set T and the constraint C are not necessarily equal (e.g.,
Line 6 in Figure 1).

The meet operator t is the logical disjunction ∨ for the
constraint domain and set union ∪ for the taint domain,
i.e., (C1, T1) t (C2, T2) = (C1 ∨ C2, T1 ∪ T2) for two
data-flow facts (C1, T1) and (C2, T2). For any (C, T ), we
define (C, T ) t ⊥ = (C, T ). In the following we separate
the flow functions into two parts: the flow functions of the
taint domain and of the constraint domain. Let 〈n,m〉 be a
control-flow edge and let (Cin, Tin) refer to the data-flow
fact before n and (Cout, Tout) denote the fact before m,
then we describe the flow function F in form of the result
set (Cout, Tout) = F (Cin, Tin). The analysis operates on an
intermediate representation, called Jimple [35]. We define the
analysis based on the statements affecting either C or T of a
data-flow fact (C, T ).

B. Flow Functions of the Taint Domain

The flow functions of the taint domain mostly follow
standard access-path based taint tracking data-flow propaga-
tion [1], [36]. For instance, as a field-sensitive analysis, COVA

1. int a = obj.randomValue();

(TRUE, ∅)

2. boolean x = getOptionX()

(TRUE, ∅)

3. if (x)

(TRUE, {(x, TRUE, X)})

4. a = 1

(X, {(x,X,X)})

(!X, {(x, !X,X)})

5. if (a<0)

(X, {(x,X,X), (a,X, 1)})
t (TRUE, {(x, !X,X), (x,X,X), (a,X, 1)})

(!X, {(x, !X,X)})

6. print(secret)

TrueFalse

True Incomplete taint set Tin

Fig. 3. An example shows an incomplete taint set. Assume getOptionX() is
a constrain-API whose return value is represented by the symbolic value X .

kills any tainted access path with local variable x at an assign-
ment statement n : x = ? 1. Let T−in = Tin\{(x, ?, ?)}. For an
assignment statement n : x = y it is Tout = T−in∪{(x, c, v)}
if there is a taint (y, c, v) ∈ Tin, i.e., if any incoming access
path matches the right side, an access path for the left side is
added to the out set. For a field-store assignment statement,
i.e., n : x.a = y , an access-path based analysis has to add the
indirectly aliasing access paths of x [1] and COVA relies on
an on-demand alias analysis [36]. A new taint is created at any
assignment statement where the right side of the statement is
labeled as a constraint-API. COVA also tracks values which
are indirectly influenced by constraint-APIs in form of taints.
We omit the details of each flow function here due to space
constraints2.

C. Flow Functions of the Constraint Domain

To compute Cout, COVA conjoins the constraint Cin with
an extending constraint Cnew which is created at conditional
statements or UI callbacks, i.e., Cout = Cin ∧ Cnew. The
constraint of each taint in Tin will also be extended with Cnew.
Moreover, COVA only propagates taints whose constraints are
not equal to FALSE. Thus, Tout = {(x, c∧Cnew, v)|(x, c, v) ∈
T−in and (c∧Cnew 6= FALSE)}. In the following we focus on
introducing how Cnew is computed.
NORMALFLOWFUNC:

For an if-statement n : if (a⊕ b) with a comparison oper-
ator ⊕, COVA creates Cnew based on the available taints in
Tin. The following cases are considered:

(i) Tin contains only taints for variable a (analog for b).
Assume there are k taints (a, ci, vi) ∈ Tin with i ∈ {1, ..., k}.
If b is a constant, COVA creates a constraint ei by substituting
the variable a in the formula a ⊕ b with its value vi and

1The symbol ? is a placeholder representing an irrelevant argument.
2Detailed flow functions can be found in the long version of this

paper at https://github.com/secure-software-engineering/COVA/blob/master/
longversion.pdf
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conjoining the result with ci for each taint (a, ci, vi), i.e.,
ei = (vi ⊕ b) ∧ ci if the successor statement m is in the
TRUE branch of n. For the case m is in the FALSE branch
ei = ¬(vi ⊕ b)∧ ci. If b is an untracked variable, the formula
vi ⊕ b is replaced by the imprecise constraint im(vi) in ei.
COVA then computes Cnew = (

∨k
i=1 ei)∨ cmiss. We explain

the constraint cmiss in the following.
If COVA would track all values used in an if -statement,

the taints (a, ci, vi) ∈ Tin share the following invariant∨k
i=1 ci = Cin. In practice, we often have an incomplete taint

set Tin, which means the value of a for some constraint is
present, but not for the other constraints and the invariant is
violated. Figure 3 illustrates such a case. The taint set before
the statement if(a<0) indicates a to hold the value 1 under
the constraint X . The statement if(a<0) has constraint
Cin = TRUE (in red) and is unconditionally reachable. The
taint set for a is incomplete, because COVA cannot propagate
a taint for a under the constraint !X as a holds an unknown
return value of the method call obj.randomValue(). For
variable a the constraint !X is the missing-constraint cmiss.

(ii) Tin contains taints for both a and b. Assume there are
k taints (a, ci, vi) ∈ Tin and q taints (b, dj , wj) ∈ Tin. COVA
computes eij by substituting a and b analogously as in the
previous case. eij = (vi ⊕wj)∧ ci ∧ dj for the TRUE branch
and eij = ¬(vi ⊕ wj) ∧ ci ∧ dj for the FALSE branch. Let
cmiss and dmiss be the missing-constraints for variable a and
b respectively, Cnew = (

∨
ij eij) ∨ cmiss ∨ dmiss.

For a switch-statement, the flow function is analog.
CALLENTRYFLOWFUNC: For a call n : o.f(a1, ..., ak) ,
Cnew = sym(f) if f is a callback from the constraint-APIs.
CALLLOCALFLOWFUNC: This function is the same as CAL-
LENTRYFLOWFUNC.
CALLEXITFLOWFUNC: The constraint stays unchanged.

D. Obtaining the Constraint Map

VASCO terminates once a fixed point is reached. The result
computed by VASCO is a map from (ctx, n) ∈ Context ×
Statement to data-flow facts in C× 2T. The Cin values before
each statement are used to extract the constraint map. Since
a statement n can be in multiple contexts, COVA merges the
Cin values of n from different contexts by logical disjunction.

IV. IMPLEMENTATION

We implemented COVA as an extension to Soot [35]
that computes partial path constraints for Java and Android
applications. The constraint-APIs are given in configuration
files. For Android apps, we construct call graphs using Flow-
Droid [1]. For alias analysis, COVA’s taint analysis uses
Boomerang [36], a demand-driven flow- and context-sensitive
pointer analysis. To simplify and evaluate the constraints
during the constraint analysis, we rely on the theorem prover
Z3 [37]. COVA only propagates taints with satisfiable con-
straints. The current implementation fully supports constraints
in boolean propositional logic, equality logic and linear arith-
metic logic. To increase scalability we did not model string

operations precisely, but instead only use imprecise symbolic
values to express them.

To be able to judge the confidence in the results COVA
reports, we developed a new micro-benchmark (publicly avail-
able with COVA), comprising 92 specially crafted test pro-
grams (e.g., primitives or heap objects used in conditional
statements, nested conditional statements, intra- and inter-
procedural conditional dependencies, callback invocations, in-
direct conditional dependencies, etc.). On this benchmark,
COVA achieved a precision of 100% and a recall of 95%,
which gives us a reasonable confidence of the results COVA
computes.

V. EVALUATION

Our evaluation is designed to understand the nature of
taint flows detected by a static Android taint-analysis tool,
and potential avenues to eliminating false positives among
those taint flows. We chose FlowDroid [1] as our evaluation
tool, since it is well maintained and, according to previous
studies [29], [38], beats other tools both in accuracy and
efficiency. The evaluation intends to answer the following
research questions:
• RQ1. What types of taint flows does FlowDroid report?

How common is each type?
• RQ2. How large is the fraction of easily actionable

unconditional intra-procedural taint flows, and what char-
acteristics do these flows have?

We next address both questions one after the other.
RQ1. What types of taint flows does FlowDroid report?

How common is each type?:
a) Methodology: We randomly sampled 2,000 Android

apps from the AndroZoo dataset [39]. All sampled apps were
available in popular app stores (Google Play and Anzhi Mar-
ket) between year 2016 and 2018. These criteria ensure that
we report on the real-world apps from recent years. The apps
can be downloaded from this link3. We used FlowDroid v2.5.1
in its default configuration. In this configuration, FlowDroid
lists 47 methods as sources4 and 122 as sinks. We applied
FlowDroid to these 2,000 apps and it reported 1,022 apps to
contain data leaks. FlowDroid reported 28,176 taint flows for
these 1,022 apps, which makes it intractable to study every
single taint flow in every app. Thus, our methodology follows
these two steps:

(1) we measured which source-sink-pairs appeared in the
taint flows and chose the top 3 source-sink-pairs among intra-
and inter-procedural taint flows (see Table I) for our case study,
since these source-sink-pairs dominate a large amount of taint
flows, and among most (88%) of the remaining pairs each
pair only appeared in fewer than 50 taint flows (out of 28,176
in total). To determine apps for our case study, we applied
stratified random sampling: the apps with taint flows using
these 6 source-sink-pairs are divided into 6 groups, one for

3https://www.kaggle.com/covaanalyst1/cova-dataset
446 sources are listed in the configuration file SourcesAndSinks.txt

and 1 source android.app.Activity.findViewById(int) is treated specially by
only considering password input fields.
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TABLE I
STRATIFIED SAMPLING THE TOP SOURCE-SINK-PAIRS AMONG THE TAINT FLOWS REPORTED BY FLOWDROID

Gr. Source Sink #Taint Flows #Apps #Sampled Apps
Intra-procedural

A java.net.URL.openConnection java.net.HttpURLConnection.setRequestProperty 2,193 535 54
B android.os.Handler.obtainMessage android.os.Handler.sendMessage 1,410 199 20
C java.net.HttpURLConnection.getOutputStream java.io.OutputStream.write 194 166 17

Inter-procedural
D android.database.Cursor.getString android.app.Activity.startActivityForResult 1,440 156 16
E java.net.URL.openConnection java.net.HttpURLConnection.setRequestProperty 862 291 30
F android.database.Cursor.getString android.os.Bundle.putString 847 85 9

each pair, which we here label with A to F. Due to large
amount of reverse engineering and manual work involved in
the inspection, we only sampled 10% of the apps of each
group. The manual inspection was done in pair by two of the
authors.

(2) we conducted an experiment in which we applied both
FlowDroid and COVA to the apps in our dataset. An app
is passed to both FlowDroid and COVA (see Figure 2). The
experiment was designed to classify the taint flows with the
following types:
• UI-constrained taint flows are dependent on UI actions.
• Configuration-constrained taint flows are dependent on

hardware/software configuration.
• I/O-constrained taint flows are dependent on data inputs

through streams or file system.
Whenever a taint flow is reported by FlowDroid, we conjoin
the constraints of the source and the sink computed by
COVA to obtain the leak-constraint and use it to classify this
taint flow. For instance, the leak in our motivating example
(see Figure 1) will be classified to both UI-constrained and
Configuration-constrained, since the leak-constraint SDK ≤
26 ∧ CLICK ∧ TELEPHONY contains symbolic values
which stand for configuration (SDK and TELEPHONY) and
UI action (CLICK) at the same time. We collected a list of
constraint-APIs from the Android Platform (API level 27) that
COVA ought to track:
• 335 APIs for UI actions, which are UI callbacks. We

first scanned the whole Android platform with gestural
keywords such as click, scroll, etc., to extract a list of
possible UI callbacks. Based on this list, callbacks were
manually selected.

• 448 APIs for hardware and software configuration. We
collected the APIs based on the official Android guide of
device compatibility [40].

• 120 APIs for data input via I/O streams or file system,
which are mainly from the java.io package.

The selection of the APIs was done by pair-reviewing by
two researchers. The list is publicly available with COVA.
We set a timeout of 30 minutes per app for COVA. COVA
terminated its analysis and computed a complete constraint
map for 315 apps. (In cases in which analysis times out, this
was most often due to slow constraint solving in Z3, see sec-
tion VI.) For the remaining 707 apps, COVA only computed
partial constraint maps. The experiment was conducted on a

UI-constrained

Configuration-constrained I/O-constrained

Infeasible
False positives

Unconstrained

9.3%

2.7% 0.6%

0.7%

31%

54.8%

0.04%
0.7% 0.1%

0.004%

Fig. 4. Different types of taint flows.

/*** code pattern 1 ***/
HttpURLConnection c = (HttpURLConnection) new

URL("http...").openConnection(); //source
c.setDoInput(true);
c.setRequestProperty("User-Agent", "Mozilla/5.0");

//sink

/*** code pattern 2 ***/
Message m = handler.obtainMessage(); //source
handler.sendMessage(m); //sink

/*** code pattern 3 ***/
HttpURLConnection c = (HttpURLConnection) new

URL("http...").openConnection();
c.setDoOutput(true);
OutputStream s = c.getOutputStream(); //source
s.write(data); //sink

Listing 1. Code patterns from group A, B, C.

virtual machine with an Intel Xeon CPU running on Debian
GNU/Linux 9 with Oracle’s Java Runtime version 1.8 (64 bit).
The maximal heap size of the JVM was set to 24 GB.

b) Results: Figure 4 shows the different types of taint
flows and their fractions in our study. While the false positives
were all identified in step (1), the fractions of other types
(UI-constrained, Configuration-constrained, I/O-constrained,
Infeasible, Unconstrained and intersections) were computed in
step (2). The infeasible taint flows are those with unsatisfiable
leak-constraints reported by COVA. The fraction of the uncon-
strained taint flows is only an upper bound. For apps on which
COVA timed out, if there is no constraint for the source and
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public class MainActivity extends Activity {
private String secret;
public void caller(){

this.secret = cursor.getString(i); //source
callee();

}
public void callee() {

Intent i = new Intent();
this.startActivityForResult(i, ...); //sink

}}

Listing 2. Code pattern from group D.

sink statements of a taint flow in the partial constraint map,
we assigned this taint flow with the type “Unconstrained”.

In step (1), we studied the most common taint flows while
keeping the following questions in mind: Is this taint flow
feasible, i.e., could it be a leak? Do some code patterns with
the same source-sink-pair exist in the taint flows? To assess
the feasibility, we used the data-flow path (in Jimple) between
source and sink of each taint flow reported by FlowDroid and
the decompiled code of the apps.

Intra-procedural taint flows, Groups A-C: As shown in
Table I, the source-sink-pair (URL.openConnection, HttpURL-
Connection.setRequestProperty) appeared most frequently in
both intra- and inter-procedural taint flows (group A and E).
While the given source method creates a connection object
with a given URL, the sink sets the general properties of a
HTTP request. This source-sink-pair combination apparently
does not constitute a leak, since the connection is not even
opened when only calling URL.openConnection. One instead
still has to call URLConnection.connect or equivalent methods
(e.g., URLConnection.getInputStream) to initiate the commu-
nication [41]. During the inspection for the above-mentioned
source-sink-pair in group A, we discovered that the reported
taint flows share some common patterns. Code pattern 1 in
Listing 1 shows an example usage of this source-sink-pair,
which is a common way to set up the header of a HTTP
request. This is no leak.

Code pattern 2 in Listing 1 is another common pat-
tern we identified in group B. The factory method Han-
dler.obtainMessage is regarded as a source by FlowDroid. This
method creates a new empty message instance. It does not poll
a message from the message queue of the Android handler.
This method should thus be excluded from the list of sources.
Code pattern 3 from group C is a similar case.

In summary, taint flows which fall into these code patterns
are false positives. To determine how many taint flows match
these code patterns, we extended FlowDroid to detect these
patterns, and re-analyzed the apps in groups A, B and C. In the
end, 2,630 (46%) reported intra-procedural taint flows matched
these three code patterns. As shown in these code patterns,
the root cause of these false positives is that their sources,
which FlowDroid uses in its default configuration, are actually
inappropriate, i.e., they do not return sensitive data.

Such a big fraction of false positives caused by this reason
cannot be ignored. Thus, the first author examined all 47

TABLE II
INAPPROPRIATE SOURCES AND SINKS USED BY FLOWDROID

Signature
android.os.Handler.obtainMessage()
android.os.Handler.obtainMessage(int,int,int)
android.os.Handler.obtainMessage(int,int,int,Object)
android.os.Handler.obtainMessage(int)
android.os.Handler.obtainMessage(int,Object)
android.app.PendingIntent.getActivity(Context,int,Intent,int)
android.app.PendingIntent.getActivity(Context,int,Intent,int,Bundle)
android.app.PendingIntent.getBroadcast(Context,int,Intent,int)
android.app.PendingIntent.getService(Context,int,Intent,int)
java.net.URLConnection.getOutputStream()
java.net.URL.openConnection() *[regarded as both source and sink]

sources by reading the Javadoc carefully together with one de-
veloper with more than 5 years experience in Java. Altogether,
they identified 11 APIs that were mistakenly made source/sink
(see Table II). These inappropriate sources and sinks resulted
in 7,767 reported taint flows, which is 28% of all reported
taint flows (intra- and inter-procedural).

About a quarter (11/47) of default sources provided by
FlowDroid are inappropriate and cause more than a quarter
(28%) of all reported taint flows being false positives.

After a discussion with FlowDroid’s maintainers, they con-
firmed the mistake and removed the inappropriate sources and
sinks from the default list in FlowDroid’s GitHub repository.5

This affects the pairs A, B, C and E.
Inter-procedural taint flows, Groups D-F: Because the

source of group E is inappropriate, the manual inspection
of this group was unnecessary. We next describe the results
of the manual inspection of the remaining groups D and
F. The taint flows from group D use the source-sink-pair
(Cursor.getString, Activity.startActivityForResult). Taint-flows
with this source-sink-pair could be part of a leak when the
intent passed to Activity.startActivityForResult contains data
reading from Cusor.getString and the second activity passes
this received data to an untrusted sink. Since taint flows using
such inter-component communication are outside the scope
of FlowDroid, our goal for inspection was only to check
if this partial data-flow is feasible. Surprisingly 88% of the
taint flows from Group D proved to be false positives. All
these false positives share a similar code pattern, shown in
Listing 2. In this example, FlowDroid taints this.secret
and reports a leak when the sink method is called on the
base object of the taint this.secret, which is the this
object. However, there is no tainted data that flows into the
intent passed for the sink method. Such over-approximation
in FlowDroid’s analysis logic, while sometimes useful, is too
approximative for the sink Activity.startActivityForResult.

Generally, taint flows with taints connecting sources and
sinks on the same objects should be filtered. Thus, we extended
FlowDroid with a static analysis that detects such cases and re-

5The link to the commit: https://github.com/secure-software-engineering/
FlowDroid/commit/211b73e32a0ade1ded021f2fc30b0aa647be5862
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analyzed the relevant apps. 330 taint flows matched the false
positive pattern in Listing 2. In total, we identified 978 taint
flows with taints connecting sources and sinks on the same ob-
jects. The sinks appearing in these taint flows are mainly APIs
used for inter-component communication. The remaining sinks
(e.g. HttpResponse.execute(HttpUriRequest)) only make sense
when the right parameter was tainted. However, FlowDroid
reported these taint flows when the base object was tainted.

In our study, all taint flows reported by FlowDroid with
taints connecting sources and sinks on the same objects
are false positives.

The sink Bundle.putString used in taint flows from group F
is also an API for inter-component communication. Similar to
group D, we checked if the reported partial flow is feasible. We
found out that while 89% of the reported flows are feasible,
the false positives all happened in one app and the flows were
just for putting the name of the app into the sink. However, the
fact that the partial flows are feasible does not mean they are
a part of true leaks, since one does not know how the sensitive
data stored in Bundle were used in other activities, which was
not reported by FlowDroid. In total, we identified that at least
one third (31%) of taint flows reported by FlowDroid in the
default configuration are false positives.

In step (2), we classified6 taint flows that are dependent
on the constraint-APIs with COVA. For instance, if the
leak-constraint contains symbolic values that relate to the
constraint-APIs from UI callbacks, then this taint flow belongs
to category “UI-constrained”. Certainly, there can be taint
flows which belong to multiple categories.

As shown in Figure 4, among the 14.2% taint flows whose
occurrences are dependent on the constraint-APIs in the cate-
gories, the majority are in a single category – UI-constrained,
which means they only occur when some specific UI actions
are performed. 2.7% of the taint flows may happen under
certain environment configurations, and 0.6% are dependent
on inputs from I/O operations. The numbers in the Venn
diagram’s intersections of different categories indicate that
interactions between values read from APIs in different cate-
gories are rare but do exist.

Taint flows are seldom conditioned by combinations of
UI interactions, environment configurations and I/O opera-
tions. Most taints could thus be dynamically confirmed by
different tools that specialize on the respective category.

Because complex UI dependencies may require a test har-
ness to drive the application with the needed sequences of
events, we investigated the complexity of the UI actions.
Intuitively, taint flows triggered by a sequence of user actions
should exist. A previous study [9] has found malicious ap-
plications in which a user needs to click a series of buttons
to trigger the display of a widget which leaks the data. To

6Note: For the classification, we excluded the false positives we identified
in step (1).
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Fig. 5. The distribution of UI-constrained taint flows.

TABLE III
TOP CONSTRAINT-APIS RELATED TO TAINT FLOWS

UI Callback #Flows
android.view.View.OnClickListener.onClick 2088
android.widget.AdapterView.OnItemClickListener.onItemClick 623
android.content.DialogInterface.OnClickListener.onClick 595
Configuration #Flows
android.os.Build.VERSION.SDK INT 255
android.content.Context.getSystemService(“connectivity”) 246
android.content.Context.getSystemService(“location”) 224
I/O Operation #Flows
java.io.InputStream.read 158
java.io.BufferedReader.readLine 16
java.io.ObjectInputStream.readObject 10

estimate the complexity, we calculated how many different
UI actions are involved in a UI-constrained taint flow by
counting the number of symbolic values for UI actions used
in the leak-constraint. (Note that our constraint encoding is
able to distinguish different UI actions.) Figure 5 shows the
distribution of UI-constrained taint flows. 56.1% (1,475) of
taint flows happen after a single UI action. There are only
3.8% of taint flows that may require 6 or more UI actions.
Maximally 11 different actions appeared in a leak-constraint.
However, executing the taint flow does not require all 11
actions at the same time, since there are disjunctions in the
leak-constraint (e.g., A∨B contains two actions A and B, but
one action is sufficient to execute the taint flow).

Despite the existence of sophisticated sequences of UI
actions, our results indicate the dynamic exploration of
most UI action-related taint flows could be easier than
expected.

Among the configuration-constrained taint flows, the dis-
tribution is even simpler: the largest number of taint flows
(85.6%) require a single configuration option and 13.9% of
them are dependent on two options. Only 5 taint flows happen
under a complex configuration with more than two options.

The necessary configuration-based conditions for exposing
taint flows are easy to be satisfied in the majority of cases.

Table III shows which constraint-APIs from our categories
are most frequently used. While click events are relevant
to most taint flows related to UI actions, the Android SDK
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version plays a considerable role in environment configura-
tions. This is not surprising to us, since the Android operating
system remains highly fragmented [42]–[44] and developers
are challenged to produce applications that are compatible to
multiple platform versions. However, the importance of taint
flows which only occur in obsolete versions of Android may
be limited in practice. Constraints based on I/O operations are
mostly checking if the end of a data stream has been reached,
e.g., if(inputStream.read()!=-1).

Additionally, we observed that for 28% of the 208 infeasible
taint flows, their source statements were not executable, since
the path constraint is FALSE. For 76% of the infeasible
taint flows, their sink statements will never be executed at
runtime. Such dead code was probably intentionally built in
by developers [45], e.g., during sampling, we inspected code
used for logging (sinks of taint flows) that was disabled with
a boolean flag for the released APK, but not removed.

RQ2. How large is the fraction of easily actionable uncon-
ditional intra-procedural taint flows, and what characteristics
do these flows have?:

c) Methodology: Taint flows that are intra-procedural
and unconstrained, i.e., the leak-constraint computed by
COVA is equal to true, are easy to detect and clearly directly
actionable for developers. We call such flows “low-hanging
fruits”. We sought to acquire the characteristics of the “low-
hanging fruits”, and thus again applied stratified random
sampling with proportion 10% to the taint flows with top
source-sink-pairs in Table IV.

d) Results: In our study, only 3.5% of the taint flows
are “low-hanging fruits” (intra-procedural and unconstrained).
However, “low-hanging fruits” are still the majority of the
intra-procedural taint flows and they exist in 32% (329) of
the apps in our dataset. During the manual inspection for
taint flows with top source-sink-pairs in Table IV, we found
that taint flows with source-sink-pair of group X cannot
usually be interpreted as leaks. Listing 3 shows a simpli-
fied taint flow using this source-sink-pair. The private field
this.secret is first tainted. FlowDroid taints the return
value of this.getContentResolver() since the base
object is the prefix of the tainted this.secret. Finally,
the taint flow is then reported when the sink is called on
the tainted this.getContentResolver(). This is again
an over-approximation FlowDroid uses similar to the one
in Listing 2. However, such taint flow could be a leak,
since the implementation of Context.getContentResolver and
ContentResolver.query could be overridden maliciously.

In comparison to group X, taint flows of group Y and Z are
straightforward: they log data from databases. Actually, the log
methods from android.util.Log are the most frequently used
sinks. About half (46%) of the “low-hanging fruits” are leaks
in which sensitive information such as data from databases,
location information, device ID, the MAC addresses or even
passwords are logged. Many of these leaks even have source
and sink at the same line of code. In addition, the text that will
be logged often specifies what kind of data is being logged.

TABLE IV
TOP SOURCE-SINK-PAIRS AMONG “LOW-HANGING FRUITS”

Gr. Source Sink #Sampled/#Total
Taint Flows

X android.database.
Cursor.getString

android.content.
ContentResolver.query 14/137

Y android.database.
Cursor.getString android.util.Log.e 10/96

Z android.database.
Cursor.getString android.util.Log.i 7/70

public class MainActivity extends Activity {
private String secret;
public void foo(){

this.secret = cursor.getString(i); //source
this.getContentResolver().query(...); //sink

}}

Listing 3. Code pattern from group X.

Besides log methods, sinks for inter-component communi-
cation such as Bundle.putString, SharedPreferences.putString
and Context.sendBroadcast are also popular among the “low-
hanging fruits”. They appeared in 20% of the taint flows. To
determine if these taint flows are malicious, additional context
must be provided, since benign applications often use these
methods for accessing and modifying preference data between
activities.

Discussion: First, our results show important ways in which
taint-analysis tools can and should be improved. On the one
hand, the sources and sinks configured for the tools should
be checked more carefully, since an inappropriate source can
cause a large amount of false positives, as we determined
for FlowDroid in RQ1. Researchers who used FlowDroid
in the default configuration may need to re-evaluate their
conclusions. Even in just a short investigation, we already
found 9 papers in which the respective work was built on top
of FlowDroid and inappropriate sources or sinks were used
[20]–[28]. In none of these papers did the authors mention that
they have manually checked for false positives that would have
been caused by the inappropriate source/sink configurations.
Hence, while it is possible that such manual checks were
conducted without mentioning them, it is equally possible that
the papers report results that are distorted by the presence
of those false positives. Given the over 1,000 citations of
the FlowDroid paper, many more such works are likely to
exist. On the other hand, some rules used in taint analysis
may be not suitable for all sources and sinks, as we have
seen in the case shown in Listing 2 for FlowDroid, a taint
flow was reported when the base object calling the sink was
tainted. However, here the correct way to report a taint flow
is when the actual argument (intent) of the sink is tainted.
Such cases could be handled easily without increasing analysis
complexity. Although we only studied the results reported by
FlowDroid, problems we discovered for such a widely used
tool may not be a single case among numerous taint-analysis
tools.

Second, hybrid analysis tools may well be feasible for the
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case of Android. The results of RQ1 show that to confirm
static taint flows dynamically, they should focus on modeling
UI actions, but in some cases must be able to set correct
environment options as well, and must deal with stream-I/O to
some limited extent. Luckily, the overlap between those three
classes is small, so that one can probably go a long way even
by designing specific, decoupled analysis tools for all three
situations. Our tool COVA can further aid the implementation
of such hybrid analysis tools: the path constraints it computes
can guide dynamic analyses, even in situations where flows
are not conditioned on external stimuli at all.

Third, “low-hanging fruits”, i.e., unconditional intra-
procedural flows, are quite common—they exist in 32% of all
apps as we show in RQ2. Many of such leaks can be easily
fixed, and so even purely static taint-analysis tools can and
should prioritize these leaks in the report.

VI. LIMITATIONS

COVA computes partial path constraints—it only consid-
ers control-flow decisions that are dependent on a list of
constraint-APIs we collected. However, as we discuss in
section V, we feel that by the way this list was collected,
it is comprehensive. Although COVA supports most language
features, some corner cases such as reflection or native calls
are not covered [46]. In some cases, the taint set computed by
COVA may be incomplete due to unknown return values of
API method calls such that an over-approximated constraint
is computed. For Android applications, we use the call graph
constructed by FlowDroid. This call graph, however, is par-
tially incomplete for library methods and some UI callbacks
[47], [48]—a known limitation of FlowDroid.

Since COVA uses Z3 for constraint-solving, the limitations
of Z3 are inherited by COVA. In our experiments, an average
of 49% percent of the analysis time was occupied by Z3. In
fact, this is also one of the main reasons why COVA failed
to analyze some apps within the given time budget. In the
worst case, 98% of the analysis time for an app was spent for
constraint-solving. Increasing the time budget may not help,
since Z3 can hit memory pressure and throw exceptions when
solving large formulas, which happened in our preliminary
experiments. Such exceptions cannot be evaded by increasing
the JVM heap size, since they originate from the native code
of Z3. In the future, we plan to turn COVA into an on-
demand analysis such that it only computes a constraint for a
given statement instead of computing a constraint map for all
reachable statements.

Since COVA failed to analyze some apps in our experiment,
our study may have been biased to include only certain kinds
of taint flows. Many of the ”unconstrained” taint flows might
be constrained by multiple factors in reality.

VII. RELATED WORK

We discuss how our approach relates to previous work in
the areas of taint analysis, path conditions, as well as hybrid
analysis approaches.

Studies Involving Taint Flows: Many researchers have
studied Android applications from various perspectives [17],
[24], [25], [49]–[52]. Avdiienko et al. [24] compared the taint
flows in benign apps against those in malicious apps, and
used machine learning to identify the differences in usage
of sensitive data. Unlike COVA, their approach MUDFLOW
does not consider path constraints. Keng et al. [17] moni-
tored 220 Android apps with the dynamic taint-analysis tool
TaintDroid [53] to study the correlation between user actions
and leaks. However, their results are limited to the leaks they
observed during the runtime. Their results show that many
apps leak data due to user actions on certain GUI widgets,
which we were able to show statically. Closely related to our
approach, Lillack et al. [51] also extended taint analysis to
explore the variability of Android apps based on load-time
configuration. However, their approach encodes constraint
analysis as a distributive problem in the IFDS framework [33].
For our purpose, this model is insufficient, since the execution
of a branch may depend simultaneously on two or more
configuration options, which IFDS cannot express [31], [54].

Path Conditions: Many approaches have considered
path conditions to increase the accuracy of their analysis.
Snelting [30] has shown how exacting and simplifying path
conditions can improve slice accuracy. Taghdiri et al. [55]
made information flow analysis more precise by incrementally
refining path conditions with witnesses that did not yield
an information flow in execution. TASMAN [56] leverages
backward symbolic execution as a post-analysis to eliminate
false positives in which taint flows along paths are infeasi-
ble at runtime. TASMAN is based on the distributive IFDS
framework, but constraint computation is not a distributive
problem. TASMAN thus needs to approximate in places which
COVA can handle precisely. In result, COVA’s computation
is more expensive but COVA’s path expressions are also more
precise. A general major limitation of symbolic execution is
that it cannot explore executions with path conditions which
the underlying SMT solver cannot deal with in the given
time budget [57]. This limitation is shared with COVA. To
improve scalability, modern symbolic execution techniques
mix concrete and symbolic execution in so-called concolic
execution. Anand et al. [58] propose a concolic execution
approach to generate sequences of UI events for Android appli-
cations. Schütte et al. [59] also use concolic execution to drive
execution to cover target code. They claim that their approach
is not limited to any specific kind of conditions, i.e., can handle
all kinds of condition (user input, environmental setting and
even remote site input). Yet their prototype ConDroid was only
designed and evaluated for one specific vulnerability. COVA
was evaluated on a wide range of taint flows. The results of
our study indicate that tools which seek to expose taint flow
dynamically could concentrate on one kind of condition at a
time, which is important for scalability.

Hybrid Analysis: A number of hybrid approaches, i.e.,
combinations of static and dynamic analysis, have been pro-
posed for Android malware detection [9]–[14]. SmartDroid
by Zheng et al. [9] statically detects UI interaction sequences
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that lead to sensitive API calls, and it exposes those behaviors
dynamically. Yang et al. [10] propose a hybrid approach
in which they first identify the possible attack-critical path
with static mining algorithms based on sensitive APIs and
existing malware patterns, then execute the program in a
focused scope under dynamic taint analysis. Wong et al. [13]
demonstrate IntelliDroid, a tool which generates a reasonably
small set of inputs statically to trigger malicious behavior of
applications. Their evaluation shows that one only needs to
execute a very small part of the application to expose malicious
behaviors. Recent work of Rasthofer et al. [12] combines a
set of static and dynamic analyses with fuzzing to generate
execution environments to expose hidden malicious behaviors
efficiently.

VIII. CONCLUSION

In this paper, we introduced COVA, a new tool for tracking
user-defined APIs through the program and computing path
constraints based on these APIs. We conducted a COVA-
supported study which gathers information about the nature
of static taint-analysis results, particularly with FlowDroid.
Our study shows important ways how static taint-analysis
tools can be improved and how information about taint-
flows conditioned on different factors can be used for future
taint-analysis research, particularly with the aim of further
eliminating false positives.
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fragmentation in android apps,” in 2016 IEEE Security and
Privacy Workshops, SP Workshops 2016, San Jose, CA, USA,
May 22-26, 2016, 2016, pp. 204–213. [Online]. Available: https:
//doi.org/10.1109/SPW.2016.31

[44] “Platform Versions,” accessed 2018-07-19. [Online]. Available: https:
//developer.android.com/about/dashboards/

[45] M. Eichberg, B. Hermann, M. Mezini, and L. Glanz, “Hidden truths in
dead software paths,” in Software Engineering 2016, Fachtagung des GI-
Fachbereichs Softwaretechnik, 23.-26. Februar 2016, Wien, Österreich,
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