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Static taint analysis for detecting data leaks 
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Context-sensitive

Flow-sensitive Field-sensitive

Object-sensitive
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State-of-the-art taint analyses are not path-sensitive 
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Static taint analysis tools:

◼ Will tell: there is a taint flow between source and sink – a potential leak

◼ Won‘t tell:

◼ which value does secret hold at runtime

◼ this taint flow can only happen when the command is „upload“.
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Using dynamic analysis for validating static findings
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Dynamic analysis tools must run a test case:

◼ Covering the execution path

◼ In this example a file contains a String „upload“
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Hard to generate such a test case!
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Research Goal
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◼ To study Android taint-analysis results on real world apps 

◼ To understand what kind of path conditions are relevant  

◼ How taint flows are conditioned on different factors 

Factor 1

Factor 2

Factor 3

...

Taint flow
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We seek to identify … 
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I/O operations

Configurations

UI interactions
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Research Questions

A Qualitative Analysis of Android Taint-Analysis Results, @LinghuiLuo, ASE'19, San Diego

What types of taint flows does FlowDroid report? 

How common is each type?

FlowDroid 
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Challenges
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◼ analysis may not scale

◼ analysis of path constraints is a non-

distributive problem

◼ FlowDroid built on top of IFDS 

◼ IFDS solves distributive problems

Can‘t simply make static taint analysis path-sensitive:
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Our Solution
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Methodology

A Qualitative Analysis of Android Taint-Analysis Results, @LinghuiLuo, ASE'19, San Diego

◼ Dataset: 2000 Android apps (2016-2018) from AndroZoo 

◼ FlowDroid v2.5.1 in default configuration

◼ We collected constraint-APIs for COVA

◼ 335 APIs for UI interactions

◼ 448 APIs for Configurations

◼ 120 APIs for I/O operations

◼ Semi-automated study in two steps

◼ Filter false positives

◼ Classifying taint flows wrt. path constraints  
1022

978

FlowDroid reports 28176 taint flows in 2000 apps

Leaky apps Non-leaky apps
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Step 1: Filter false positives
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Stratified random sampling taint flows according to top source-sink-pairs

Group #Flows #Apps #Sampled 

Apps

A 2,193 535 54

B 1,410 199 20

C 194 166 17

D 1,440 156 16

E 862 291 30

F 847 85 9

Intra-procedural 

Inter-procedural 
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False-positive patterns found in step 1
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Group A & E  (source = openConnection, sink = setRequestProperty )

Group B (source = obtainMessage, sink = sendMessage )
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Takeaways
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11/47 default sources used by FlowDroid are inappropriate. 

They cause 28% of taint flows being false positives. 

Researchers who used FlowDroid in the default configuration may 

need to re-evaluate their conclusions. 

In a short investigation, we found 9 papers in which the work was 

built on top FlowDroid and inappropriate sources and sinks were 

used. 
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False-positive patterns in step 1 (continued)
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Group D (source = getString, sink = startActivityForResult )
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Takeaways
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Taint flows with taints connecting sources and sinks on the same 

objects are false positives. 

For a better precision, such approximated rule should not be used 

for all sources and sinks, but only in certain cases. 
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Step 2:  Classify taint flows wrt. path constraints 
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IO-constrained

Configuration-constrained
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Classification in step 2
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UI-constrained

Configuration-constrained I/O-constrained

54.8% 

Unconstrained

Infeasible

False positives
9.3%

2.7% 0.6%

0.7% 0.1%

<0.01%

0.04%

31%

0.7%
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Takeaways
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Taint flows are seldom conditioned by combinations of the three 

factors. 

Thus, most taint flows could be dynamically confirmed by different 

tools that specialize on the respective category. 
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Summary
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https://github.com/secure-software-engineering/COVA
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COVA: A Static Analysis Tool for Computing Partial 

Path Constraints
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Constraint MAP Code

TRUE 1 String secret = source();

TRUE 2 button.setOnClickListener(new OnClickListener(){

TRUE 3 void onClick(View view){

CLICK 4 int sdk = Build.VERSION.SDK_INT; 

CLICK 5 if (sdk < 20)

CLICK Λ SDK<20 6 sink(secret);

CLICK Λ SDK≥20 7 else 

CLICK Λ SDK≥20 8 doSth1();

CLICK Λ SDK≥20 9 if (sdk < 20)  

FALSE 10 doSth2();

https://github.com/secure-software-engineering/COVA
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Feel free to contact me if you have any questions
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linghui@outlook.de
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