
Faculty for Computer Science, Electrical Engineering and Mathematics

Improving Real-World Applicability
of Static Taint Analysis

Linghui Luo

Dissertation
Submitted in Partial Fulfillment

of the Requirements for the Degree of
Doktor der Naturwissenschaften (Dr. rer. nat.)

Advisor:
Prof. Dr. Eric Bodden

Paderborn, September 12, 2021

Abstract

Static taint analysis is a program analysis technique that can be used to detect malicious software
and a wide range of security vulnerabilities. Although there have been many static taint analysis
tools created in both industry and academia, very few are widely used in industry, despite the
importance of the problems these tools can detect. This dissertation investigates why and
focuses on improving the real-world applicability of static taint analysis. It addresses three
existing problems that hinder the real-world adoption of static taint analysis.

The first problem is the lack of real-world benchmarks. Static taint analysis tools have
been mostly evaluated on micro benchmarks (small programs with artificially constructed vul-
nerabilities), which are often designed by analysis builders to test tool features, and are not
representative for real-world software applications (big and complex programs). This leads to
analysis tools that work well on micro benchmarks, but are less effective in finding real-world
issues, since real-world applications contain more corner cases. To address this problem, we con-
structed a real-world malware benchmark suite called TaintBench, with a well-documented
baseline ground truth, i. e., verified security issues that should be found. With TaintBench
we re-evaluated popular static taint analysis tools for Android applications. Our results show
that these tools miss most of the critical issues we identified for the TaintBench suite. We
investigated FlowDroid, which performed best in our evaluation. Our investigation reveals
that incomplete call graphs are a major reason why FlowDroid could not detect many is-
sues. To ameliorate this problem, we created GenCG, which produces a placeholder library
that models framework’s behaviors to construct sound call graphs. We show that our approach
enables the static taint analysis in FlowDroid to detect more issues in TaintBench and
DroidBench without losing the precision. We also demonstrate the application of GenCG on
Spring-framework-based web applications to show it is not limited to Android, but is generally
applicable for modeling Java framework behaviors.

For the sake of scalability, static taint analysis tools often ignore path conditions and produce
only may-results. This leads to the second problem: tools can produce warnings that are either
unrealizable or a given user will not care about (e. g., issues exist in code targeting old hardware
that are not supported anymore). The third contribution of this dissertation tackles this problem
using COVA, which computes path constraints that can be applied for refining the results of
any client analysis. Using COVA we conducted a large-scale study on real-world commercial
Android applications to gather information about the nature of real-world taint flows. Our study
shows how static taint-analysis tools can be improved and how path constraints computed by
COVA can be used to eliminate false positives and prioritize warnings in analysis reports.

One more reason that state-of-the-art static taint analysis tools are not widely adopted by
software developers, is that they are not integrated into IDEs that are commonly used by de-
velopers, making them cumbersome to use. We tackle this issue with a general approach called
MagpieBridge, which enables analysis providers to bring analyses into IDEs more easily and
quickly in comparison to traditional plugin-based IDE integration. We shows its generaliz-

iii

ability by integrating multiple analyses produced both in academia and industry. As the last
contribution of this dissertation, we conducted a user study with software developers at Ama-
zon Web Services to understand what specific features are expected by developers for IDE
integration of cloud-based Static Application Security Testing (SAST) tools. We implemented
MagpieBridge-based IDE support for Amazon CodeGuru Reviewer and tested its usability
with developers. One of our findings is that developers expect the IDE support for cloud-based
SAST tools to behave similarly to the lightweight static analyzers they are familiar with. How-
ever, reusing the same visual components for the SAST tool that are also used by lightweight
static analyzers created confusion. Developers need more clear visual cues in the IDE to un-
derstand the asynchronous nature of cloud-based analyses. Our study also shows that IDE
integration significantly encouraged developers to interact more with the SAST tool in compar-
ison to its existing browser-based integration.

Through this dissertation, we show static taint analysis needs to be refined for the real world
and that it can be improved by addressing the above mentioned real-world problems.

Zusammenfassung

Statische Taint-Analyse ist eine Programmanalysetechnik, mit der bösartige Software und eine
Vielzahl von Sicherheitslücken aufgespürt werden können. Obwohl sowohl in der Industrie als
auch im akademischen Bereich viele statische Taint-Analyse-Werkzeuge entwickelt wurden, wer-
den nur sehr wenige davon in der Industrie eingesetzt, und dies ungeachtet der Bedeutung der
Probleme, die diese Werkzeuge erkennen können. Diese Dissertation untersucht die Gründe dafür
und konzentriert sich darauf, die Praxistauglichkeit der statischen Taint-Analyse zu verbessern.
Sie befasst sich mit drei bestehenden Problemen, die den Einsatz der statischen Taint-Analyse
in der Praxis behindern.

Das erste Problem ist das Fehlen von realistischen Benchmarks. Statische Taint-Analyse-
Werkzeuge wurden meist an Mikro-Benchmarks (kleine Programme mit künstlich konstruierten
Schwachstellen) evaluiert, die oft von den Entwicklern der Analysewerkzeuge entworfen wurden,
um die Funktionen der Werkzeuge zu testen, und die nicht repräsentativ für reale Software-
anwendungen (große und komplexe Programme) sind. Dies führt zu Analysewerkzeugen, die
zwar in Mikro-Benchmarks gut funktionieren, aber weniger effektiv bei der Suche nach Prob-
leme in der realen Welt sind, da reale Anwendungen mehr Sonderfälle enthalten. Um dieses
Problem zu lösen, haben wir in dieser Dissertation eine Benchmark-Suite für reale Malware
namens TaintBench mit einer gut dokumentierten Ground-Truth-Basis entwickelt, d. h. veri-
fizierte Sicherheitsprobleme, die gefunden werden sollten. Mit TaintBench haben wir populäre
statische Taint-Analyse-Werkzeuge für Android-Anwendungen neu evaluiert. Unsere Ergebnisse
zeigen, dass diese Werkzeuge die meisten der kritischen Probleme nicht erkennen, die wir für die
TaintBench-Suite identifiziert haben. Wir haben FlowDroid genauer untersucht, das bei un-
serer Bewertung am besten abgeschnitten hat. Unsere Untersuchung ergab, dass unvollständige
Call-Graphen ein Hauptgrund dafür sind, dass FlowDroid viele Probleme nicht erkennen kon-
nte. Um dieses Problem zu beheben, haben wir GenCG entwickelt, das eine Platzhalterbiblio-
thek erstellt, die das Verhalten des Frameworks modelliert, um solide Call-Graphen zu erstellen.
Wir zeigen, dass unser Ansatz die statische Taint-Analyse in FlowDroid in die Lage versetzt,
mehr Probleme in TaintBench und DroidBench zu erkennen, ohne an Präzision zu ver-
lieren. Wir demonstrieren auch die Anwendung von GenCG auf Spring-Framework-basierte
Webanwendungen, um zu zeigen, dass es allgemein für die Modellierung von Java-Framework-
Verhaltensweisen anwendbar ist.

Aus Gründen der Skalierbarkeit ignorieren statische Taint-Analyse-Werkzeuge oft Pfadbe-
dingungen und liefern nur “May-Results”. Dies führt zum zweiten Problem: Werkzeuge können
Warnungen ausgeben, die entweder nicht realisierbar sind oder die ein bestimmter Benutzer
nicht beachten wird (z. B. Probleme in Code, der auf alte Hardware abzielt, die nicht mehr un-
terstützt wird). Der dritte Beitrag dieser Dissertation befasst sich mit diesem Problem und stellt
das Werzeug COVA vor, das Pfadbeschränkungen berechnet, die zur Verfeinerung der Ergeb-
nisse einer beliebigen Client-Analyse verwendet werden können. Mit COVA haben wir eine groß
angelegte Studie mit realen kommerziellen Android-Anwendungen durchgeführt, um Informa-

v

tionen über die Art der realen Taint-Flows zu sammeln. Unsere Studie zeigt, wie Taint-Analyse-
Werkzeuge verbessert werden können und wie die von COVA berechneten Pfadeinschränkun-
gen zur Eliminierung von falsch-positiven Ergebnissen und zur Priorisierung von Warnungen in
Analyseergebnissen verwendet werden können.

Ein weiterer Grund dafür, dass statische Taint-Analyse-Werkzeuge, die dem neuesten Stand
der Technik entsprechen, von Softwareentwicklern nicht in großem Umfang eingesetzt werden
ist, dass sie nicht in IDEs integriert sind, die von Entwicklern üblicherweise verwendet wer-
den, was ihre Verwendung umständlich macht. Wir gehen gegen dieses Problem mit einem
allgemeinen Ansatz namens MagpieBridge vor, der es Analyseanbietern ermöglicht, Analysen
einfacher und schneller in IDEs einzubinden, als dies mit der traditionellen Plugin-basierten
IDE-Integration möglich ist. Wir zeigen seine Verallgemeinerbarkeit, indem wir mehrere Anal-
ysen integrieren, die sowohl im akademischen Bereich als auch in der Industrie erstellt wurden.
Als letzten Beitrag dieser Dissertation haben wir eine Nutzerstudie mit Softwareentwicklern bei
Amazon Web Services durchgeführt, um zu verstehen, welche spezifischen Funktionen von den
Entwicklern in Bezug auf die IDE-Integration von Cloud-basierten Static Application Security
Testing Tools (SAST-Tools) erwartet werden. Wir haben eine MagpieBridge-basierte IDE-
Unterstützung für Amazon CodeGuru Reviewer implementiert und die Benutzerfreundlichkeit
mit Entwicklern getestet. Eine unserer Erkenntnisse ist, dass Entwickler erwarten, dass sich
die IDE-Unterstützung für Cloud-basierte SAST-Tools ähnlich verhält wie die leichtgewichtigen
statischen Analysewerkzeuge, mit denen sie vertraut sind. Die Wiederverwendung derselben
visuellen Komponenten für das SAST-Tool, die auch von leichtgewichtigen statischen Analy-
sewerkzeuge verwendet werden, führte jedoch zu Verwirrung. Die Entwickler benötigen klarere
visuelle Hinweise in der IDE, um die asynchrone Natur der Cloud-basierten Analysen zu ver-
stehen. Unsere Studie zeigt auch, dass die IDE-Integration die Entwickler im Vergleich zur
bestehenden browserbasierten Integration deutlich mehr zur Interaktion mit dem SAST-Tool
ermutigt.

In dieser Dissertation zeigen wir, dass die statische Taint-Analyse für die reale Welt verfein-
ert werden muss und dass sie verbessert werden kann, indem die oben genannten praktischen
Probleme angegangen werden.

Acknowledgement

I would like to specially thank my husband Jonas Manuel who encouraged me to pursue a PhD.
He always believes in me and has always been supportive no matter the good and bad days during
my PhD journey. I would also like to thank my PhD advisor Eric Bodden, for introducing me to
the field of program analysis, for his continued support of my research and generous feedback.
I am also very grateful for his support in letting me intern in the industry, which led to fruitful
publications. Through my internships I could work with some amazing researchers: Julian Dolby
from IBM research, Martin Schäf and Daniel Sanchez from Amazon. Julian Dolby was not just
a collaborator, but also became a mentor for me. I am very thankful for his continued support
even after our collaboration on the MagpieBridge work was completed and all the discussions
about program analysis research we had, which were very inspiring and helpful. I also want to
thank Martin Schäf for challenging me with my internship project. His support enabled me to
interview software developers at Amazon to understand how to build better program analysis
tools for them. This experience was extremely valuable and changed my ways of thinking.

I would also like to thank my other coauthors: Johannes Späth, Goran Piskachev, Felix
Pauck, Manuel Benz, Ben Hermann, Martin Mory, Ivan Pashchenko, Erik Krogh Kristensen,
Nataniel P. Borges Jr. and Fabio Massacci. In particular, thanks to Johannes to be my first
collaborator and helping me a lot at the start of my research career. Special thanks to Felix
Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko, Ben Hermann, Martin Mory and Fabio
Massacci for their continued support and advice in the TaintBench work, which spanned
over two years. I am also very thankful to all my colleagues and ex-colleagues, especially
Goran Piskachev, Martin Mory, Vera Meyer, Jürgen Maniera, Manuel Benz, Andreas Dann
and Lisa Nguyen Quang Do. During my PhD, I was also lucky to supervise a few talented
students: Markus Schmidt and Christian Brüggemann helped me in the TaintBench work.
Fynn Hauptmeier contributed to the extension of COVA. Many thanks to them.

I also want to thank my dissertation committee for their availability for my defense: Eric
Bodden, Julian Dolby, Ben Hermann, Juraj Somorovsky and Simon Oberthür. Special thanks
to the three reviewers of my dissertation: Eric Bodden, Julian Dolby and Ben Hermann.

This dissertation would not have been possible without the funding from the state of North
Rhine-Westphalia in Germany. Special thanks to the coordinator of the research training group
NERD.NRW Martin Degeling.

Lastly, I would like to thank my parents for supporting me to study in Germany, my sister
for her emotional support and encouragements.

vii

Contents

Acronyms 1

1 Introduction 3
1.1 Problem Statement . 3
1.2 Common Benchmarks Are Small and Incomplete . 4
1.3 Real-World Issues Often of Limited Interest . 5
1.4 Little Adoption by Developers . 5
1.5 Outline and Publication Details . 6

2 Real-World Malware Benchmarking of Android Taint Analyses 9
2.1 Terminology . 10
2.2 Related Work . 11

2.2.1 Android Taint Analysis Tools . 11
2.2.2 Existing Benchmark Suites . 12

2.3 Benchmark Construction Criteria . 13
2.4 The TaintBench Framework . 15

2.4.1 Part 1—Construction . 16
2.4.2 Part 2—Evaluation . 17
2.4.3 Part 3—Inspection . 19

2.5 Real-World Benchmarking . 21
2.5.1 Part 1—Construction of the TaintBench Suite 21
2.5.2 Part 2—Evaluation with the TaintBench Suite 29
2.5.3 Part 3—Inspection of the Analysis Results 36

2.6 Threats to Validity . 39
2.7 Conclusion . 39

3 GenCG: A General Approach to Modeling Java Framework Behaviors 41
3.1 A Motivating Example . 42
3.2 Background . 44

3.2.1 Entry Points and Lifecycle Modeling . 44
3.2.2 Inter-Component Communication . 45
3.2.3 Analysis of Library Methods . 45
3.2.4 Construction of Application-only Call Graphs with Averroes 46

3.3 Existing Problems with Averroes’s Model . 49
3.4 The GenCG Approach . 51

3.4.1 Main Improvements . 52
3.4.2 Sound and Precise Call Graph . 55

ix

3.4.3 Supporting Detection of ICC Leaks . 58
3.5 Evaluation of GenCG . 61
3.6 Application of GenCG on the Spring Framework 67

3.6.1 Handling Annotated Entry Points . 67
3.6.2 Handling Bean Autowiring . 69
3.6.3 Implementation Details . 71
3.6.4 Evaluation with CGBench . 71

3.7 Related Work . 76
3.8 Limitations and Threats to Validity . 77
3.9 Conclusion . 77

4 Towards Path-Sensitive Analysis with COVA 79
4.1 A Motivating Example . 80
4.2 Non-Distributivity . 82
4.3 The Inter-procedural Constraint Analysis in COVA 82

4.3.1 The VASCO Framework . 82
4.3.2 Analysis Domain . 85
4.3.3 Flow Functions of the Taint Domain . 85
4.3.4 Flow Functions of the Constraint Domain 88
4.3.5 Termination . 91

4.4 Implementation . 91
4.5 Evaluation of COVA . 92
4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis Results 94
4.7 Usage of COVA for Targeted Testing Input Generation 103

4.7.1 Android Testing Frameworks . 103
4.7.2 Extended COVA . 104

4.8 Threats to Validity . 107
4.9 Related Work . 107
4.10 Conclusion . 108

5 Integrating Static Analyses into IDEs with MagpieBridge 111
5.1 Related Work . 113
5.2 Approach . 115

5.2.1 The MagpieBridge Workflow . 116
5.2.2 The MagpieBridge System . 123

5.3 Integration of Existing Static Tools . 127
5.3.1 Diagnostics . 127
5.3.2 Code Lenses . 128
5.3.3 Hovers . 130
5.3.4 Repairs . 130

5.4 More Tool Integrations . 131
5.5 Conclusion . 134

6 IDE Support for Cloud-based SAST Tools 135
6.1 Background . 136
6.2 User Interviews . 137

6.2.1 Methodology . 137
6.2.2 Result of the User Interviews . 138

6.3 Prototyping . 141
6.4 Second-round Interviews . 144

x

6.5 Usability Testing . 145
6.5.1 Methodology . 145
6.5.2 Quantitative Analysis . 146
6.5.3 Qualitative Analysis . 151

6.6 Threats To Validity . 154
6.7 Related Work . 154
6.8 Conclusion . 155

7 Conclusion and Future Work 157

Bibliography 160

A Supplementary Material of Chapter 2 181
A.1 Usability Test . 181

A.1.1 Participants . 181
A.1.2 Study Design . 181
A.1.3 Data Collection . 183
A.1.4 Results . 183

A.2 Figures . 185

B Supplementary Material of Chapter 3 187
B.1 Figures . 187
B.2 Tables . 190

C Supplementary Material of Chapter 5 199
C.1 Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach199

C.1.1 Comparison Between MagpieBridge-Based CogniCrypt and CogniCrypt
Eclipse Plugin . 199

C.1.2 Comparison to Other Plugin-Based Approaches 201

D Supplementary Material of Chapter 6 205
D.1 Script For User Interviews . 205
D.2 Codes . 206
D.3 Survey For Usability Tests . 209

xi

xii

Acronyms

API Application Programming Interface

APK Android Application Package

App Application

CFG Control-Flow Graph

CG Call Graph

CHA Class Hierarchy Analysis

CI/CD Continuous Integration/Continuous Delivery

DB DroidBench

DTA Declared Type Analysis

FN False Negative

FP False Positive

GUI Graphical User Interface

ICFG Inter-procedural Control-Flow Graph

ICC Inter-Component Communication

IDE Integrated Development Environment

I/O Input/Output

IR Intermediate Representation

LSP Language Server Protocol

PAG Pointer Assignment Graph

RTA Rapid Type Analysis

SAST Static Application Security Testing

SASP Static Analysis Server Protocol

SARIF Static Analysis Results Interchange Format

1

SDK Software Development Kit

SMT Satisfiability Modulo Theories

SSA Static Single Assignment

TAF Taint Analysis Benchmark Format

TB TaintBench

TN True Negative

TP True Positive

UI User Interface

VSC Visual Studio Code

VTA Variable Type Analysis

2

Introduction

1
Security breaches happen on a daily basis and are a serious threat to enterprises. As reported in
IBM’s 2019 Cost of a Data Breach Report, the average total cost of a data breach has reached
$3.91 million [Sec19]. Just in 2019, there were 1473 data breaches in the US and more than 164
million records stolen [Sta20]. In May 2021, the fuel pipeline operator Colonial Pipeline had
to pay 75 Bitcoins (nearly $5 million) to recover its data stolen by a ransomware [MDSK21].
Since the first release of the German Luca app for contact tracing during the COVID-19 pan-
demic, a chain of security vulnerabilities has been discovered and a great skepticism about its
usefulness has arisen [Reu21][Ker21]. A significant amount of money could have been saved and
damage to company image could have been avoided if such threats had been detected at an early
stage. Evidently, this is not always the case in practice, despite a wealth of work on a variety
of prevention techniques. In this dissertation, we focus on static program analysis. It analyzes
programs without executing them and its application ranges from discovering undefined behav-
iors (e. g., null pointer dereferences) to detecting security vulnerabilities (e. g., SQL injections)
to preventing malware infection (e. g., data theft). Static taint analysis, in particular, is able
to detect a wide range of security vulnerabilities and malicious behaviors. It tracks data flows
from sensitive sources (e. g., API which reads untrusted user input or private data) to sensitive
sinks (e. g., API which executes a dangerous function or posts data to the internet). Such data
flows are called taint flows. Many well-known issues can be triggered by taint flows, e. g., data
theft, SQL injections, cross-site scripting, etc.

1.1 Problem Statement

In the past, many static taint analysis tools have been created both in industry and academia,
but only few of them have found widespread use in industry. There are two countervailing
reasons for this: scalability on the one hand, and good results on the other. Static tools are
considered to produce good results if they yield high precision (i. e., a low rate of false positives)
and recall (i. e., a low rate of false negatives) in benchmarking. However, producing good results
and being scalable at the same time is very challenging in terms of real-world applications
(apps) because of both their size and complexity. Many taint analysis tools have assessed their
precision and recall on micro benchmark apps, hence optimized to achieve good results on
them [PBW18, QWR18]. In contrast to evaluation on micro-benchmark apps, evaluations on
real-world apps are uncommon due to the lack of established benchmarks. This leads to three
problems that have hampered real-world applicability of these tools:

3

1.2 Common Benchmarks Are Small and Incomplete

• Common benchmarks are small and incomplete: Micro benchmark apps rarely
use the full range of real platforms, leading analysis to miss issues due to incomplete
modeling [BGC15].

• Real-world issues often of limited interest: Analysis tools ignoring real-world sce-
narios like code conditioned for platform versions for the sake of scalability [LBP+17]. This
can produce warnings that a given user will not care about or are even unrealizable, i.e.
can never happen at runtime [ARHB15].

• Little adoption by developers: Micro benchmark apps tend to be simple, but real
programs are sprawling and often include intricate issues. Developers need tool support
to understand these difficult real-world issues. Static analysis tools produced in academia
have been mostly restricted to automated experiments where the analyses are run as
command-line tools [ARF+14, OMJ+13, LBB+15, WROR14], paying little to no attention
to usability aspects on the side of developers. There has been less integration of these
analyses in IDEs commonly used by developers.

In this dissertation, we tackle these three problems to improve real-world applicability of static
taint analysis. We focus on Android in this dissertation, but similar issues arise in other set-
tings [SAP+11, WR13, AFK+20, JSMB13]. In the following, we introduce our contributions
addressing each problem.

1.2 Common Benchmarks Are Small and Incomplete

To address the first problem, the first step is to obtain more realistic benchmarks. As a first
contribution, presented in Chapter 2 of this dissertation, we constructed a real-world malware
benchmark suite for Android taint analysis. The benchmark suite, called TaintBench, is the
first real-world suite in this area with a documented baseline—a subset of the ground truth.
It can only be a subset, since the problem (i. e., identifying all security issues in real-world
applications) is intractable in general. Along with the suite, we developed a set of tools which
allows a faster benchmark-suite construction, a reproducible evaluation of static taint analysis
tools on this suite and easier triaging of static findings. Using TaintBench we evaluated popular
static taint analysis tools. Our results show that these tools have much lower precision and recall
on real-world malware apps in comparison to micro benchmark apps. Even with an unrealistic
configuration of these tools (i. e., tools are configured with sources and sinks used by the malicious
flows), the majority of malicious taint flows in TaintBench remain undetected. We further
investigated FlowDroid, which produced the best result on TaintBench. Our investigation
reveals that 35% of the taint flows in TaintBench could not be detected by FlowDroid due
to relevant methods missing from the call graphs. Clearly, one needs to construct better call
graphs.

Our next contribution, presented in Chapter 3, is a new way to build a call graph that
is more complete, but still tractable to build. Call graphs are major building blocks for
interprocudural static analyses, which are challenging to build for modern framework-based
applications. To be scalable, most static analysis tools model rather than analyzing frame-
works [GKP+15, WROR14, ARF+14, SAP+11]. FlowDroid, for instance, models the behaviors
of the Android framework by constructing a dummy main method which simulates the lifecycle
of each Android component and starts the analysis from there. However, this precise modeling
is hard to maintain, since every year a new version of Android comes out with new APIs, which
introduces new behaviors to the framework. It is also impractical to do so for every framework.
Popular frameworks for Java enterprise applications such as Spring make use of annotations

4

Chapter 1. Introduction

which guides the framework to decide which code should be executed through reflective calls.
To be useful, a call graph must somehow overcome these frameworks: analyzing them is im-
practical, but modeling is too. In this dissertation, we propose a general approach to modeling
Java frameworks. Our approach GenCG is not limited to any framework or analysis tool, and
therefore, highly reusable. In GenCG, we developed Averroes-GenCG—an improvement of
Averroes [AL13] that generates a placeholder library for a given Android/Java framework.
This generated placeholder library can be used as a replacement of the original framework by
popular call graph construction algorithms (e. g., VTA, RTA, Spark [SHR+00, LH03]) and fur-
ther client analyses. The framework behavior is modeled in the placeholder library code and
will be reflected in the constructed call graphs. While a generic approximation can be noisy,
we show our carefully-constructed one does well. We demonstrate its generalization with two
frameworks—Android and Spring. Experiments on Android with a client taint analysis show
that our approach produces more complete call graphs than the original analysis. As a result,
both precision and recall of the client analysis on TaintBench are improved.

1.3 Real-World Issues Often of Limited Interest

Even given a complete enough call graph, analysis precision is still key. In terms of improving
precision, various sensitivities are considered by static taint analysis tools. To handle aliasing
and virtual dispatch in Java programs, static tools apply context-, object-, and field-sensitivities.
While a flow-sensitive analysis takes the order of statements into account, a path-sensitive anal-
ysis evaluates branch conditions. Although most static taint analysis tools support multiple
sensitivities at the same time, path-sensitivity is usually left out, resulting in warnings that
developers don’t care about or even false-positives. The third contribution of this dissertation
tackles this problem. We designed an approach that computes partial path constraints to en-
hance results produced by a client analysis. This approach is presented in Chapter 4. We
implemented a tool called COVA that combines data-flow analysis with SMT solving. COVA
can be configured to track information one is interested in, e. g., user inputs, I/O operations or
system settings, and reasons about the path constraints over such information for each reach-
able statement in the program. Using COVA we conducted a qualitative study of taint flows
from a large set of real-world commercial Android apps. In this study, we could identify how
these real-world taint flows are conditioned on environment settings (e. g., platform versions),
user interactions (e. g., button clicks) and I/O operations (e. g., file reading and writing). Such
qualitative data about the circumstances under which taint flows may actually occur can be
used to guide dynamic approaches which confirm static findings. We further extended COVA
to not only compute the path constraint of a specific statement, but also generate concrete user
inputs that are required to execute this statement at runtime. Experiments with a small set
of apps from F-Droid show the feasibility of using this approach to generate valid user inputs
for testing randomly selected statements, which is a step towards dynamic validation of static
findings.

1.4 Little Adoption by Developers

As many recent studies show, if static analysis tools do not yield actionable results, or if they do
not report them in a way that developers can understand and fit into developers’ workflow, then
the tools will not be adopted [JSMB13, CB16, DAL+17a]. While static taint analysis tools can
help developers find security vulnerabilities in their code, there has been less adoption of such
analyses in tools commonly used by developers, i.e., in interactive development environments
(IDEs) such as Eclipse, IntelliJ, Android Studio and Visual Studio Code. Although IDEs are

5

1.5 Outline and Publication Details

the ideal reporting location wanted by developers for static analysis. Even with the existence
of IDE integration, tools like DroidSafe [GKP+15], Cheetah [DAL+17b] and IBM Security App-
Scan [IBM07] mostly target one specific IDE, since a substantial engineering effort is involved
to integrate a specific analysis for a specific language into a specific IDE. Given that degree of
needed effort, the sheer variety of popular tools and potentially-useful analyses makes it im-
practical to build every combination. To foster a better adoption of these tools by developers,
researchers need ways to bring tools into IDEs more easily and quickly. As a fourth contribution
of this dissertation, we created a general approach to integrating static analyses into IDEs and
Editors—MagpieBridge. To show MagpieBridge’s generalizability, we integrated a few anal-
yses from academia—FlowDroid [ARF+14], CogniCrypt [KNR+17] and Ariadne [DSAR18], and
two analyses from industry—Facebook Infer [Fac15] and Amazon CodeGuru Reviewer [Ser20]
into IDEs. This work is presented in Chapter 5.

As a last contribution presented in Chapter 6 we conducted a multiple-staged user study with
software engineers at Amazon Web Services (AWS) to explore how IDE support for a purely
cloud-based static analysis, that is typically used in continuous integration (CI) or continuous
delivery (CD), should be designed to meet the expectations of developers. In this study, we built
a prototype of the IDE support for a cloud-based Static Application Security Testing (SAST)
tool—Amazon CodeGuru Reviewer. We evaluated this prototype with 32 software engineers at
AWS with a usability test. We share challenges and lessons learned in the exploration that can
be beneficial for others who wish to build such IDE support.

1.5 Outline and Publication Details

Most parts of the dissertation are based on publications I authored over the course of my PhD.
The list below states the outline of this dissertation and details publications each chapter is
based on:

• Chapter 2 presents the TaintBench work on constructing real-world benchmarks and
evaluation of Android taint analyses using the constructed benchmark suite. A paper
about this work is accepted by the Empirical Software Engineering (EMSE) journal and
currently in the publishing process. In addition to some parts of the work that are presented
in the paper, an in-depth case study of FlowDroid’s false negatives is also introduced in
this chapter.

Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko, Martin
Mory, Eric Bodden, Ben Hermann, Fabio Massacci. TaintBench: Automatic Real-World
Malware Benchmarking of Android Taint Analyses. Empirical Software Engineering (EMSE),
2021 [LPP+21].

• Chapter 3 presents the details about the GenCG work on call graph construction and
evaluations on both Android and Spring frameworks. An early conception of this work
is published in the following short paper and won the second place at the ACM Student
Research Competition:

Linghui Luo. A General Approach to Modeling Java Framework Behaviors. The ACM
Student Research Competition at the 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE),
2021 [Luo21].

• Chapter 4 introduces details of the tool COVA and the qualitative analysis of Android
Taint-Analysis results from the following publication:

6

Chapter 1. Introduction

Linghui Luo, Eric Bodden, Johannes Späth. A Qualitative Analysis of Android Taint-
Analysis Results. 34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2019 [LBS19].

• Chapter 5 presents details about MagpieBridge, its development and applications since
its first appearance in the following publication:
Linghui Luo, Julian Dolby, Eric Bodden. MagpieBridge: A General Approach to Integrat-
ing Static Analyses into IDEs and Editors, 33rd European Conference on Object-Oriented
Programming (ECOOP), 2019 [LDB19].

• Chapter 6 introduces the user study we conducted with software engineers at Amazon
Web Services published in the following paper:
Linghui Luo, Martin Schäf, Daniel Sanchez, Eric Bodden. IDE Support for Cloud-Based
Static Analyses, the 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), 2021 [LSSB21a]

• Chapter 7 concludes the dissertation and discusses future research directions.

7

1.5 Outline and Publication Details

8

Real-World Malware Benchmarking of
Android Taint Analyses

2
Many mobile applications are granted to access and process sensitive data such as contact lists
or the user’s GPS location, which require protection against abuse. In case of Android, the most
popular mobile operating system [Sta19], it is crucial to protect users’ privacy. Hence, in case
of most marketplaces, such as Google Play Store, any app trying to enter must be reviewed.
Numerous malware detection mechanisms have been developed that can be used for automating
the review process [WROR14, ARF+14, EGC+14, GKP+15, GS17, YS17]. Nonetheless, frequent
news reports of malware apps bypassing such mechanisms and being accepted by marketplaces
show that this process sometimes fails [Son20, Mic20a].

One such malware detection mechanism, static taint analysis, in particular, is able to detect
security threats, e. g., data leaks, before they are actually exploited. To show the effectiveness of
a new taint analysis prototype, tool authors are expected to evaluate it empirically and compare
to previous approaches. Fortunately, there exist a few well-established benchmark suites for
this purpose, e. g., DroidBench [ARF+14], SecuriBench [LL05] and ICC-Bench [WROR14].
However, all these benchmark suites are sets of micro benchmark apps—small programs which are
artificially constructed for benchmarking purposes only. Evaluations of Android taint analyses
frequently use such micro benchmark apps as representatives of real-world apps [CHN16, BS18,
PZ19, ZTD19, WROR14, ARF+14].

In contrast to evaluations on micro benchmark suites, evaluations on real-world apps are un-
common and—due to missing or undocumented details—usually not reproducible. For instance,
the authors of DroidSafe [GKP+15] evaluated both DroidSafe and FlowDroid [ARF+14]
on 24 real-world Android malware apps. However, information about the malicious taint flows
in these apps is only documented in form of the types of sources and sinks (e. g., source type
is location and sink type is network). Missing details about code locations related to these
flows makes it impossible to reproduce the results, which hinders the measurement of research
progress. Additionally, documentation of the ground truth for a set of real-world apps rarely ex-
ists, since the only tools which could be used as oracles to determine these flows are the tools to
be evaluated. Thus, the associated evaluation results often come unchecked and only comprise
an enumeration of countable findings without guarantees that the findings actually represent
feasible taint flows [AKG+15, ARF+14].

But security threats that plague our world of course happen in real-world apps, so the
lack of high-quality benchmarks—publicly available real-world benchmark suites with a well-
documented ground truth—hinders progress in vital taint analysis research, even as existing
tools seem to work less well in the real world [WWZ+20, RM20, LBS19]. The work presented in
this chapter addresses this problem by constructing a real-world benchmark suite, specifically

9

2.1 Terminology

for benchmarking Android taint analysis.
The outline of the remaining sections in this chapter is as follows: we first introduce termi-

nology required to understand our work in Section 2.1 and related work in Section 2.2. We then
discuss criteria for real-world benchmark construction in Section 2.3. To ease the benchmark
construction, evaluation of Android taint analyses and inspection of the analysis results, we
developed the TaintBench framework—a collection of tools. This framework is introduced in
Section 2.4. Next, we explain details about how this framework supported us to construct the
TaintBench suite, evaluate popular Android taint analyses tools using this suite and inspect
shortcomings of the tools in Section 2.5. We present an in-depth case study of FlowDroid
regarding unexpected analysis outcomes and false negatives in Section 2.5.3, which show direc-
tions for improvement and further research, motivating the work introduced in Chapter 3 of this
dissertation. In the end, we discuss the limitations in Section 2.6 and conclude this chapter in
Section 2.7.

2.1 Terminology

Static Taint Analysis Static taint analysis is a type of data-flow analysis that tracks tainted
data flows through a program and detects data flows between sources and sinks. For detecting
data leaks in Android apps, sources are usually APIs that read sensitive private information
(e. g., phone number, contact list, etc.), while sinks are APIs that can send data to untrusted
external parties (e. g., HTTP requests), as in the example shown in Listing 2.1. For detecting
injection vulnerabilities (e. g., SQL injection, Command injection, etc.), APIs that read un-
trusted user inputs are usually considered as sources, while APIs that execute a command or
access databases are the sinks. When configured with sufficient sources and sinks, static taint
analysis tools can detect the majority of SANS/CWE top 25 most dangerous software weak-
nesses [PDB19] and common malware behaviors (e. g., financial fraud, personal information
theft, etc.) [Ras16].

1 public class WrehifsdkjsActivity extends Activity {
2 public void run() {
3 Message msg = new Message();
4 String line1Number = ((TelephonyManager)

this.getSystemService("phone")).getLine1Number(); // source
5 // ...
6 String result = doPost("https://malicious.com", "t=" + line1Number + "&app=Wrehifsdkjs");
7 // ...
8 }
9 public String doPost(String url, String params) throws Exception {

10 HttpPost method = new HttpPost(url);
11 DefaultHttpClient client = new DefaultHttpClient();
12 StringEntity paramEntity = new StringEntity(params, "UTF−8");
13 paramEntity.setChunked(false);
14 paramEntity.setContentType("application/x−www−form−urlencoded");
15 method.setEntity(paramEntity);
16 HttpResponse response = client.execute(method); // sink
17 // ...
18 }
19 }

Listing 2.1: A data leak example taken from the malware app exprespam in TaintBench.

Taint Flows The data flows between a pair of source and sink are called taint flows. Multiple
data-flow paths might result in the same taint flow as the example in Listing 2.2 shows. In

10

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

evaluations, a taint flow is usually counted as detected by a static analysis tool once a connection
consisting of one or more data-flow paths between the associated source and sink is found.

1 void onCreate(){
2 A a = new A(); B b = new B();
3 a.f = contact.read(); // source
4 if (a.f.startsWith("0"))
5 b.f1 = a.f; // on data−flow path 1
6 else
7 b.f2 = a.f; // on data−flow path 2
8 leak(b); // sink
9 }

Listing 2.2: Two data-flow paths result in
one taint flow.

1 void onCreate() {
2

3 String[] arr = new String[3];
4 arr[0] = "";
5 arr[1] = contact.read(); // source
6 leak(arr[1]); // leak, expected taint flow
7 leak(arr[0]); // no leak, unexpected taint flow
8

9 }

Listing 2.3: Expected vs. unexpected taint
flow.

Expected vs. Unexpected Taint Flows The ground truth defined in a micro benchmark
suite for benchmarking taint analysis is usually a set of expected and unexpected taint flows.
Expected taint flows are real security issues, and unexpected taint flows specify false-positive
cases which an imprecise analysis tool might still report. Established benchmark suites often
use unexpected cases to assess the precision of a tool (e. g., ArrayAccess1 in DroidBench).
Consider the example in Listing 2.3 from a benchmark app, and assume the ground truth defines
an expected taint flow from line 5 to line 6, as well as an unexpected flow from line 5 to line 7. The
expected flow in this example specifies a true data leak, while the unexpected flow specifies a case
for which tools might produce false-positive warnings (e. g., a tool overapproximates for arrays
and taints the whole array once a tainted value is written into an array.). Once a taint analysis
tool finds the expected taint flow while analyzing this benchmark app, it is counted as a true
positive (TP). A missed expected taint flow is counted as a false negative (FN). Consequently,
found and missed unexpected taint flows are counted as false positives (FP) and true negatives
(TN) respectively.

Benchmarking Metrics We call the combination of a benchmark app and an expected/un-
expected taint flow in it a benchmark case. Based on the countings of TP, TN, FP and FN with
regard to the benchmark cases defined in a suite, the benchmarking outcome is then usually
evaluated with respect to accuracy in terms of three metrics: precision, recall, and F-measure.
These metrics are computed with the following equations:

Precision = TP

TP + FP , Recall = TP

TP + FN , F −measure = 2Precision ⋅Recall
Precision +Recall

Additionally, the analysis time is recorded in most evaluations to argue about a tool’s scalability.

2.2 Related Work

In the area of Android taint analysis, there exist many static [ARF+14, WROR14, GKP+15,
LBB+15, BLYW17], dynamic [EGC+14], and hybrid [BKKL+20, PW19] analysis tools, as well
as benchmark suites [ARF+14, WROR14, MR17]. We highlight the most prominent static
analysis tools and benchmark suites with respect to taint analyses.

2.2.1 Android Taint Analysis Tools

FlowDroid [ARF+14], Amandroid [WROR14], IccTA [LBB+15] and DroidSafe [GKP+15]
are the most cited static Android taint analysis tools. Amandroid, FlowDroid and IccTA

11

2.2 Related Work

use configurable lists of sources and sinks to be considered during analysis. SuSi [RAB14] is a
machine-learning approach developed to automatically create such lists by inspecting the An-
droid APIs. More comprehensive or precise lists were produced in more recent research [PDB19].
DroidSafe’s list of sources and sinks is hard-coded in its source code, which makes it hard to
adapt for real-world apps. While DroidSafe and IccTA are not maintained anymore, Flow-
Droid and Amandroid still appear to receive frequent updates [Ama18, Flo19]. Furthermore,
all tools support different features and sensitivities that influence their precision and sound-
ness. FlowDroid and Amandroid, for example, are context-, flow-, field-, object-sensitive
and lifecycle-aware. Only IccTA and Amandroid support the analysis of inter-component
communication (ICC). None of the tools is path-sensitive due to scalability drawbacks and their
static nature. Table 2.1 shows an overview of the main characteristics of these tools. Evaluations
of the abilities of each tool can be found in previous studies [QWR18, PBW18].

Table 2.1: Overview of the main characteristics of relevant static taint analysis tools.

Tool configurable
sources & sinks

actively
maintained ICC context-

sensitive
flow-
sensitive

field-
sensitive

object-
sensitive

path-
sensitive

lifecycle-
aware

FlowDroid 4 4 8 4 4 4 4 8 4

Amandroid 4 4 4 4 4 4 4 8 4

IccTA 4 8 4 4 4 4 4 8 4

DroidSafe 8 8 8 4* 8 4 4 8 4

*: static method only

2.2.2 Existing Benchmark Suites

The most cited and hence most established benchmark suite in this field of research is Droid-
Bench [ARF+14]. DroidBench is a collection of artificial apps that forms a micro benchmark
suite. Its ground-truth description can be found in code comments in the source code associ-
ated with each benchmark app. The up-to-date version 3.0 [Dro16] comprises 190 apps with
benchmark cases in 18 different categories related to the features and sensitivities exploited.
Subsets, variants and extensions of DroidBench have been used to evaluate certain features or
more specialized taint analysis tools [WROR14, BLYW17]. ICC-Bench [WROR14] comprises
benchmark cases to evaluate the abilities of analyses to handle inter-component communication.
A recent suite contributed by us1 is DroidMacroBench [BKKL+20]—a collection of 12 real-
world commercial Android apps with annotated taint flows reported by FlowDroid. However,
due to the high complexity of commercial apps, we only labeled the taint flows as feasible (i.e., it
is possible for data to flow from a given source to a given sink) or infeasible without characteriz-
ing or giving details about the flows. For example, it remains unclear whether the tainted data
is sensitive. Thus, regarding security aspects, many feasible labeled taint flows might not be
real security threats. Moreover, because DroidMacroBench comprises closed-source apps, we
could not legally make the suite publicly available as open source. Due to these two limitations,
it cannot be used as publicly accessible and comparable proving ground truth for taint analyses.

Ghera [MR17] is a repository of micro benchmark apps sorted into different categories of
Android vulnerabilities, sometimes including taint flows. As of January 2021, Ghera contains
8 categories with 60 vulnerabilities where each one contains three apps: a benign, a malicious
and a secure one. The ground truth is documented in a text file that hold a natural language
description of the vulnerability within the specific app. However, not all of Ghera benchmark
apps are suitable for benchmarking taint analysis tools. For example, the apps in the Crypto

1I am a co-author of the paper and contributed to this suite.

12

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

catalog of Ghera contain cryptographic misuses that require typestate analysis rather than
taint analysis. Table 2.2 summarizes DroidBench, DroidMacroBench, and Ghera.

Table 2.2: Overview of the main characteristics of relevant Android benchmark suites.

Benchmark Suite Real-world apps Number of apps Open source Ground Truth
DroidBench 8 190 4 Comments in source code
DroidMacroBench 4 12 8 Jimple code labeled as in-/feasible
Ghera 8 180 4 README file

Pauck et al. [PBW18] proposed ReproDroid to refine, execute, and evaluate on benchmark
suites. Among other suites they refined DroidBench such that each benchmark app now comes
with a precisely defined, machine-readable ground truth. We include and extend ReproDroid
for enabling automatic evaluations in our TaintBench framework as described in next section.

2.3 Benchmark Construction Criteria

This section describes the criteria we used to construct a real-world malware benchmark suite
for Android taint analysis. Since there exists no widely accepted real-world benchmark suite for
this purpose, nor criteria for establishing such a suite, we used and recommend the following
three criteria for real-world benchmark suite construction:

(I) Ground-Truth Documentation Mitra et al. proposed the “Well Documented” bench-
mark characteristic—benchmarks should be accompanied by relevant documentation [MR17]. In
context of our work, each benchmark app should come with a documentation of the expected and
unexpected taint flows for benchmarking. Such documentation was provided by DroidBench,
however, only in form of code comments that mostly hold natural language descriptions. It lacks
information about the exact code locations of the taint flows. Pauck et al. [PBW18] pointed
out that such documentation could lead to incorrect evaluation of analysis results. Thus, on
top of the Well Documented characteristic, the taint flows of each benchmark app should be
documented in a standard machine-readable format such as XML or JSON. It should contain
both high-level textual information which describes the purpose of each taint flow (as in Droid-
Bench’s code comments) and exact code locations of the source, the sink, and the intermediate
statements of each flow. Furthermore, since different taint analysis tools may use different in-
termediate representations (IRs) the format must support an encoding of code locations that
can be converted into arbitrary IR code locations.

However, to create such a ground truth is difficult in case of real-world apps and impossible
in general. This is particularly true for taint flows that both human analysts and tools cannot
detect. Thus, our goal here is to create a baseline definition (i.e., a subset of all expected and
unexpected taint flows) for each benchmark app. Regarding expected taint flows, we focus on
those flows which are not only feasible (i.e., it is possible for data to flow from a given source
to a given sink) but also critical under security aspects, e. g., leaking sensitive information. Our
work aims to serve as a starting point towards a solid real-world benchmark suite for Android
taint analysis. The facilities we put in place should allow (and possibly foster) extension and
improvement of the suite.

(II) Representativeness Nguyen Quang Do et al. recommended representativeness with
respect to the target domain of the evaluated tool or analysis as an important aspect for
benchmark selection [DEB16]. In this work, we choose to focus on Android apps identified

13

2.3 Benchmark Construction Criteria

as malware. There are several reasons for this decision. First, some available Android mal-
ware datasets come with descriptions of the malicious behaviors, which are unavailable for
open-source datasets (e. g., F-Droid [F-D20]) or commercial applications. Such descriptions
accelerate the manual inspection process, for example, when faced with the manual task of
separating true from false findings produced by automated tools, since the descriptions provide
hints of the malicious behavior. Labels such as malware families or types are insufficient to
drive this process. Second, well-known Android malware datasets have often been used in eval-
uations in scientific papers [WL16, ZZD+12, RCJ13, HZT+14] including Android taint analysis
approaches [HDMD15, YQL+16]. Last but not least, Android malware is less likely to cause
licensing issues. A benchmark suite must be open-source and publicly available, and thus can-
not legally include commercial apps. Because of including closed-source, commercial apps in the
DroidMacroBench suite, the authors could not make the suite publicly available [BKKL+20].
Representativeness in our work consists of two aspects:

• the expected taint flows in the benchmark suite should be representative of taint flows
that address static-analysis challenges. These challenges are commonly agreed on by the
community such as field-sensitivity or the necessity to model implicit control flows through
the application’s lifecycle. A good example is DroidBench, which groups its benchmark
cases into 18 categories based on such challenges, e. g., aliasing, callbacks and reflection.

• the benchmark apps should be representative of the dataset it is sampled from. Reif
et al. provide a tool to generate metrics for Java programs to assess representativeness
during benchmark creation [REHM17]. Similarly, we define a set of metrics which are
relevant for Android taint analysis benchmarking in this work. Details are introduced in
Section 2.5.1.2.

(III) Human-understandable Source Code Source code availability has been widely used
in previous benchmark works [BGH+06, PRL+19, MR17]. Whenever possible, the benchmark
suite should provide human-understandable source code (either directly or by decompilation) in
addition to compiled executables. This criterion is important for the following three reasons.
First, it can help users of the benchmark suite to understand the documented taint flows. Second,
it allows the inspection of potential false positives produced by automated tools. Lastly, it
enables the community to do source-code level analysis such that the baseline definition can be
checked, improved and extended. Considering our focus on malware, source code is naturally
hard to come by. We will elaborate how we address this challenge in Section 2.5.1.

14

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

2.4 The TaintBench Framework

This section introduces the TaintBench framework, which we developed to

• simplify and speedup real-world benchmark suite construction for Android taint analysis
(Part 1—Construction in Section 2.4.1),

• allow automatic evaluation of analysis tools (Part 2—Evaluation in Section 2.4.2),

• and support source code inspection of analysis results (Part 3—Inspection in Section 2.4.3).

Figure 2.1 gives an overview of this framework, which is structured into these three parts.

Repro-

Droid

Part : Construction

Part : Inspection

Part : Evaluation

Config

1 2

3

Source

code

Set of apps

TB-Loader

TB-Extractor

Jadx

Evaluation

Results

TAF

Baseline

Definition

TB-Profiler

Profile

42 candidates 39 benchmark apps

TAF

249 benchmark cases

(203 expected, 46 unexpected)

Visual Studio Code

TB-Viewer

INPUT

Analysis Tools

DeltaApk
-Generator

MinApk
-Generator

TB-Mapper

Figure 2.1: Overview of the TaintBench framework. Every box refers to a tool extended or
built for this framework. All elements contributed in this work are marked by a ☆-symbol.

We describe the framework using a running example depicted in Figure 2.2. The first class is
an Activity component (MainActivity) which comprises one source (s1) and one sink (s5) in its
onCreate lifecycle method. The source extracts the device’s id (getIMEI) which is considered
sensitive data. Once it reaches the sink (sendTextMessage), it is leaked via an SMS. The flow
from s1 to the logging statement (s7) should not be recognized as a leak, since only the value of
the not-null check is logged. Class Foo contains only one method (bar) which contains a second
taint flow from s8 (source) to s9 (sink).

15

2.4 The TaintBench Framework

Assume a human analyst wants to specify a baseline definition contains two expected taint
flows (solid green edges) and two unexpected taint flows (solid red edges). There is also an
undocumented taint flow (blue dashed edges) that can be potentially reported by analysis tool.
We denote these five flows with the following notion:

(s1 → s5), (s8 → s9), (s1 ↛ s9), (s8 ↛ s5), (s1 ⇢ s7)

LoggerMainActivity

s6

onCreate() {

}

static imei

static checkIMEI() {

}

sendTextMessage
(Logger.imei)

(Sink)

tag = "No leak"

Log.i
(tag, imei != null)

(Sink - still no leak)

s4 Logger.checkIMEI()s4 Logger.checkIMEI()

s1
s = getIMEI()

(Source)
s1

s = getIMEI()

(Source)

Foo

bar() {

}

(Source)

s8

s9

(Sink)

s10 Foo.bar()s10 Foo.bar()

s = "IMEI: " + s

(Append to String)
s2

s = "IMEI: " + s

(Append to String)
s2

s3
Logger.imei = s

(Static field access)
s3

Logger.imei = s

(Static field access)

s5

s7

sisi Statement i

Specified Expected
Specified Unexpected
Undocumented

Taint Flow}

Legend

sjsj Instrumented statement j

Figure 2.2: Running example (example.apk).

2.4.1 Part 1—Construction

In Part 1, two tools come into play. We explain them with the running example. The first
tool, the jadx decompiler [DtJd20], allows us to extract source code from Android application
package (APK) files. We extended jadx’s GUI by adding the TB-Extractor. It enables
us to manually specify source, sink, and intermediate assignments of taint flows by selecting
the relevant source code statements directly in the extended GUI. The extension also allows
inspectors to add a high-level description and attributes (i.e., special language or framework
features) to each taint flow. Once the taint flow specification is done, TB-Extractor outputs
a JSON file which stores the information logged for each taint flow.

The second tool is the TB-Profiler. It takes both the APK and the JSON file gener-
ated by TB-Extractor and outputs automatically detectable attributes which were missed
or incorrectly assigned by the inspectors. For example, if there is a statement on a documented
taint flow which involves reflection and the human inspectors forgot to assign the attribute
reflection, the TB-Profiler will detect it automatically by checking the API signatures and
language features involved in the respective statements.2 To avoid documenting false attributes
produced by TB-Extractor, the human inspectors make the final decision if the detected at-
tributes should be assigned or not. The JSON file derived this way can be stored as the baseline
definition that specifies the taint flows for the associated benchmark app. The TB-Profiler
extracts other static information from the APK, such as the target platform version, a list of
used permissions, sensitive API calls, etc., and stores them in a profile file.

2A list of all attributes considered is given in Table 2.6 in Section 2.5.1.2.

16

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

1 { "findings": [{
2 "ID": 1,
3 "isUnexpected": false,
4 "description": "This malicious flow sends IMEI in a SMS."
5 "source": {
6 "statement": "String s = getIMEI();",
7 "methodName": "onCreate",
8 "className": "MainActivity",
9 "lineNo": 1,

10 "targetName": "getIMEI",
11 "targetNo": 1,
12 "IRs": [{"type": "Jimple",
13 "IRstatement": "$r2 = virtualinvoke ..."}]},
14 "sink": {
15 "statement": "sendTextMessage(Logger.imei);", ...},
16 "intermediateFlows": [{
17 "ID": 1, "statement": "s = "IMEI: " + s;", ...},{
18 "ID": 2, "statement": "Logger.imei = s;", ...}],
19 "attributes": {
20 "staticField": true,
21 "appendToString": true},
22 }, { ... }]...}

Listing 2.4: The TAF-File for the running example.

With our TB-Extractor extension, one could specify the baseline definition by selecting
the relevant source code statements constructing the taint flows (illustrated as solid green edges
in Figure 2.2) directly in jadx. To store the baseline definition, a JSON file conforming to
our Taint Analysis Benchmark Format (TAF)3 is generated (the output of TB-Extractor).
A shortened version of the TAF-File for the running example is provided in Listing 2.4. Each
element of the array findings describes one taint flow. It can be either expected or unexpected,
indicated by the attribute isUnexpected. In the listing, the expected taint flow (s1 → s5) is
visible. The second flow (s8 → s9) is hidden in Line 22. An example that shows how source, sink,
and intermediate flows are described with code locations, is given in Lines 5-18. If a statement
contains multiple function calls, targetName and targetNo specify which function call is meant.
Intermediate flows are assigned with IDs which indicate the order of their appearances in the
taint flow. The attributes staticField and appendToString indicate that the tainted data flows
through a statically declared variable (s3) and is appended to a String (s2). The IRs-array holds
the intermediate representations (IR) associated to the statement, such as Jimple [VCG+99,
LBLH11c]. Jimple is the IR of the analysis framework Soot on which FlowDroid is based,
and it is supported by ReproDroid. We included Jimple in the baseline, but one could certainly
fill this array with IRs from other frameworks. Jimple statements are automatically added by
TB-Loader in Part 2.

2.4.2 Part 2—Evaluation

The harness we provide to evaluate Android taint analysis tools on the TaintBench suite is an
extension to ReproDroid [PBW18]. ReproDroid is a configurable open-source benchmark
reproduction framework to (i) refine, (ii) execute, and (iii) evaluate analysis tools on benchmark
suites.

3The JSON-schema for the TAF-format can be found at https://github.com/TaintBench/TaintBench/blob/
master/TAF-schema.json

17

https://github.com/TaintBench/TaintBench/blob/master/TAF-schema.json
https://github.com/TaintBench/TaintBench/blob/master/TAF-schema.json

2.4 The TaintBench Framework

(i) Refine ReproDroid allows to create benchmark cases via a GUI. First, a set of benchmark
apps can be imported. Second, sources and sinks contained in these apps can be selected—
manually or automatically by comparison to a given list of source and sink APIs (e. g., the
SuSi [RAB14] list). By specifying sources and sinks, taint flows are implicitly specified too.
Lastly, ReproDroid allows to categorize these implicitly defined taint flows as expected or
unexpected. We adapted ReproDroid to accept our baseline definition as additional input
(see TB-Loader in Figure 2.1). Thereby, the information of the baseline definition are used
to automatically select sources and sinks and categorize taint flows as expected or unexpected.
Once the benchmark suite is fully setup in ReproDroid, it can be stored. Stored benchmarks
can then be loaded to be executed with or without using ReproDroid’s GUI. Our extension
can also be used to export tool-specific lists of the defined sources and sinks. Currently, the
formats of Amandroid and FlowDroid are supported.

For the running example, the expected (green arrow) and unexpected (red arrow) taint flows
specified in the baseline definition are:

(s1 → s5), (s8 → s9), (s1 ↛ s9), (s8 ↛ s5) Q

All taint flows are automatically converted into benchmark cases in ReproDroid.

(ii) Execute When executing an analysis tool on a benchmark suite, ReproDroid creates
one AQL-Query per benchmark case. An AQL-Query is understood by ReproDroid to run
an analysis tool on a benchmark app and standardize the tool’s result in AQL-format. The
configuration of ReproDroid allows us to specify which analysis tools should be ran. By
adapting the configuration or transforming the query according to configurable strategies, various
queries can be constructed. In our comprehensive experiments we configured ReproDroid to
use four analysis tools and six different strategies (see Section 2.5.2).

(iii) Evaluate To evaluate a tool on a benchmark suite, ReproDroid compares the expected
and unexpected taint flows constructed on the basis of the baseline definition with the actual
result computed per AQL-query.

To evaluate an analysis tool on our running example, let us assume that ReproDroid is
configured to run an analysis tool and the tool result contains four flows:

(s1 → s5), (s8 → s9), (s1 ↛ s9), (s1 ⇢ s7)

ReproDroid’s evaluation only considers the first three flows: the first two are true positives
and the third one is a false positive. A flow is evaluated as true positive (resp. false positive)
only if it matches a defined expected case (resp. unexpected case) (see Q above). The last
flow (s1⇢s7) is not specified as expected or unexpected case—it is undocumented. For such
an undocumented taint flow, manual inspection by a human analyst is required to decide if
it should be further documented as an expected or unexpected case. This way 100 additional
taint flows were added to TaintBench’s baseline definition during our evaluation introduced
in Section 2.5.2. To support manual inspection, the tool TB-Viewer was created, which will
be introduced later in Section 2.4.3.

2.4.2.1 Evaluation-Support Tools

To further support empirical evaluations in the context of the TaintBench framework, Re-
proDroid was configured with three additional novel tools.

18

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

(i) MinApk-Generator To reduce the complexity of TaintBench apps with respect to each
benchmark case, we introduce the MinApk-Generator. The MinApk-Generator prunes
the original APK and generates a minified APK for each taint flow defined in the baseline.
Considering a taint flow, any part in the code that is not connected to the source, sink, or
intermediate flows is removed. This task can be performed more efficiently than slicing the app
from source to sink, since the information about intermediate flows is given. Considering the
running example in Figure 2.2, the checkIMEI() method of class Logger is removed because
it does not appear in the baseline definition. However, this method would be kept by an ideal
forward slicing algorithm starting from s1, since the static field Logger.imei is used in the
method. MinApk-Generator only keeps the static field of this class. Since lifecycle methods
might be removed this way, a new analysis entry point is created. To do so, the component that
is launched on app start gets selected. Calls to all methods holding sources are added to one
of its lifecycle methods, e. g., a call to Foo.bar() (s10) is added to the onCreate()-method of
MainActivity in Figure 2.2. In consequence, it is ensured that the taint flow is reachable in the
call graph of the minified APK. The MinApk-Generator allows one to infer insights about
the reason why an actual taint flow may remain undetected by a tool (false negative).

(ii) DeltaApk-Generator The DeltaApk-Generator automatically generates variants
of an input app in which a single predefined taint flow, specified in the baseline definition, is
killed. DeltaApk-Generator can be used to check if the evaluated analysis tool has over-
approximated to detect a taint flow. It is used as a preprocessor in ReproDroid. DeltaApk-
Generator kills the flow from the source getIMEI by instrumenting an overriding assign state-
ment. It inserts a new assign statement s = null directly after the statement s1. Hence, the
tainted variable s is immediately sanitized in the generated delta APK. For a tainted variable
which has primitive type, DeltaApk-Generator inserts a statement that assigns a constant
value to it. This way all flows are killed from the source. A precise taint analysis tool should
report the taint flow (s1 → s5) for example.apk, but not for its preprocessed version created
by DeltaApk-Generator. If the taint flow is still detected in the delta APK, it is a false
positive.

(iii) TB-Mapper TB-Mapper lists all the sources and sinks in the baseline definition of
example.apk and converts the detected sources and sinks into a tool specific format, e. g., a file
that comprises a list of sources and sinks used by FlowDroid.

2.4.3 Part 3—Inspection

The TB-Viewer is the main component of Part 3, a Visual Studio Code (VSC) [Mic20b]
extension using the MagpieBridge framework [LDB19] (will be introduced in Chapter 5). It is
used whenever manual inspection is needed. This tool displays specified taint flows directly on
the benchmark app’s source code in VSC. It allows us to interactively inspect and compare the
baseline definition (Part 1) with the findings of an evaluated analysis tool (Part 2). To do so,
TB-Viewer provides four lists in a tree view as shown for the running example in Figure 2.3:

• (A) a list of expected and unexpected taint flows with data-flow paths that are specified
in the baseline definition,

• (B) a list of flows which are reported by an analysis tool during evaluation,

• (C) a list of matched flows,

• (D) a list of unmatched flows.

19

2.4 The TaintBench Framework

Figure 2.3: Screenshot of TB-Viewer w.r.t. running example.

List C contains all those taint flows of List A that are detected during evaluation. The contrary
holds for List D: it comprises all flows that are reported during evaluation, but do not match
any flow in the baseline. These unmatched flows in list D cannot be evaluated automatically
with ReproDroid by Part 2, which is why TB-Viewer supports their manual inspection.
TB-Viewer enables the expert to navigate through an application’s source code along visually
highlighted taint flows, step-wise from the source to the sink of each taint flow. Considering the
running example and the four flows reported by the configured tool, List A and C would contain
the two expected taint flows depicted by solid green edges in Figure 2.2 and an unexpected flow
(s1 ↛ s9). List D holds one flow: (s1 ⇢ s7)—dashed blue edges. Once this latter flow is added
to the baseline definition as an unexpected flow, list D will be empty.

We have installed TB-Viewer in the Gitpod online IDE [Git18] for GitHub, thus, all bench-
mark cases of the TaintBench suite can be viewed in a web browser.4 To show that tools we
built are usable, we conducted in a small-size usability test. Details about the usability test can
be found in Figure A.1.4.

4Find the access at https://taintbench.github.io/taintbenchSuite

20

https://taintbench.github.io/taintbenchSuite

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

2.5 Real-World Benchmarking

This section introduces real-world benchmarking of popular Android taint analysis tools we
conducted. Since the benchmarking was supported by the tools in our TaintBench frame-
work according to the three parts (Section 2.4), we also structure this section into three parts
accordingly:

• Construction: we introduce the concrete construction of the TaintBench suite—a real-
world malware suite for benchmarking Android taint analyses. We evaluate this suite
in comparison to DroidBench and the Contagio [Con12] malware dataset to show its
representativeness (Part 1 in Section 2.5.1).

• Evaluation: we present the evaluation of two prominent taint analysis tools using Taint-
Bench and compare to the evaluation with DroidBench (Part 2 in Section 2.5.2).

• Inspection: we present insights from our manual inspection of the analysis results and
show directions for future improvement (Part 3 in Section 2.5.3).

2.5.1 Part 1—Construction of the TaintBench Suite

For the suite’s construction, we decided to use available Android malware datasets, since they
are very likely to contain malicious taint flows that can and should be detected by Android
taint analysis tools. To obtain suitable malware samples to be included in TaintBench, we
compared well-known Android malware datasets as shown in Table 2.3. Considering the manual
inspection required for identifying the taint flows, we prefer datasets which have more detailed
information about malware behaviors, i.e., Contagio [Con12] and AMD [WLR+17]. From these
two, we then chose the Contagio dataset, since it was updated more recently and its size allows
us to qualitatively study all samples. When this thesis is written in 2021, AMD is unfortunately
not publicly available anymore.

Table 2.3: Comparison of Android malware datasets.

Dataset # App Malware Info Last Update
Contagio [Con12]* 344 Behavior descriptions 2020
AMD [WLR+17] 24,533 Behavior descriptions 2016**
VirusShare [Vir14] 34,265,389 Labels 2019
Drebin [ASH+14] 5,560 Labels 2012
Genome [ZJ12] 1,260 Labels 2011**

*: Online source [Con18] (accessed 02/18/2021),
**: Currently unavailable (02/18/2021)

Because original source code is not available for the apps in Contagio, we opted to de-
compile the Android malware apps. Modern Android decompilation technology allows high-
level source code files to be reconstructed successfully in most cases. Decompilation is widely
used in reverse engineering and validation of software analysis results for closed-source appli-
cations [LBS19, BKKL+20]. Another issue was that some applications in the dataset were
obfuscated (e. g., class/method/parameter names were renamed to “a”, “bbb”, etc.) such that
the decompiled code was very difficult for humans to understand. Considering the difficulty of
formulating high-level descriptions for discovered taint flows (as we stated in the documentation
criterion) in obfuscated applications and to ease the future validation of the baseline definition by
other researchers, we excluded obfuscated applications from our selection. Nonetheless we argue

21

2.5 Real-World Benchmarking

that our selection is not biased, as we show later in this section our selection is a representative
subset of the Contagio dataset.

Benchmarks

Benchmarks

Benchmarks

Input

344 Contagio Apps 58 Apps 42 Apps

Excluded Apps

Existence
of behavior

information?

Is the app
obfuscated?

Taint flows
identified?Peer Inspection

Review

39 Benchmark Apps
(with 149 expected taint flows)

Yes

Yes Yes

No

No

No

TAF

Documentation
Lists of Sources and Sinks

Extraction

Inspection

Output

39 Benchmark Apps
249 Benchmark Cases

(with 203 expected and
46 unexpected taint flows)

New Taint Flows
(reported by tools)

100 Additional Benchmark Cases
(54 expected and 46 unexpected taint flows)

TAF

Documentation

Analysis Tools

Figure 2.4: The construction process of the TaintBench suite. See a full-page version of this
figure in Figure A.2.

Figure 2.4 shows our benchmark suite construction process. The Contagio dataset contains
344 apps, but only 58 of them have references to behavior information. From these 58 apps, 42
apps that are not obfuscated became candidates for taint-flow inspection. Initially, we planned
to apply existing Android taint analysis tools to the apps and manually check the analysis
results, but we quickly gave up on this plan due to the following reasons:

• Too many flows to be checked. The three tools (Amandroid, DroidSafe and Flow-
Droid) we initially tried already reported 21,623 flows.

• False negatives remain undetected by tools. We manually inspected a few malware apps.
As our inspection reveals, the tools frequently miss critical taint flows which are part of
the actual malicious intentions of the malware apps (e. g., leaking banking information),
i.e., yield false negatives. Often the sources and sinks that appeared in critical taint flows
are not in the tools’ configuration. These false negatives were described in the behavior
information written by security experts. Thus, they had to be identified manually.

• The tools also frequently report false positives that prolong code inspection. For the
Android malware fakebank_android_samp, for instance, FlowDroid reported 23 taint
flows in its default configuration, but only 10 of them are true positives. Moreover, 8 of
these 10 only concern the logging of sensitive data using the Android Logging Service,
something that is considered secure since Android version 4.1, which protects such logs
from being read without authorization [Sie13]. All remaining 13 flows are false positives.

Consequently, we opted for an alternative approach starting with manual inspection. We man-
ually inspected the 42 candidate apps along with their behavior information to identify a set
of expected taint flows. For example, if an app’s behavior information like “monitor incoming
SMS messages” is included, our inspection starts at sources which read incoming messages.

The inspection for each app was performed by two people, both with background in Android
taint analysis research, working together as a pair in front of the same computer. Whenever a
taint flow was discovered and confirmed by both inspectors, it was added to the documentation.

22

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

After each inspection, a third inspector (a different person) reviewed the documented taint
flows. Only the taint flows confirmed by all three inspectors were retained in the final suite.
The percentage of agreement between the first two and the third inspector was 96.82%. This
resulted in 39 benchmark apps with 149 expected taint flows.

Next, we used an automated tool (see TB-Mapper in Section 2.4.2.1) to extract sources
and sinks from these 149 expected taint flows and used them to configure selected Android taint
analysis tools—those which we use during evaluation as well: FlowDroid and Amandroid.
We then applied the taint analysis tools under this configuration to all benchmark apps. This
way 100 taint flows were revealed which have not been documented during our initial manual
inspection. Using TB-Viewer, we manually checked and rated these newly discovered taint
flows. Each flow was rated independently by two authors as expected or unexpected. The
results were compared and a consensus was established. This resulted in further 100 additional
benchmark cases—54 expected and 46 unexpected taint flows. For each expected taint flow,
we also documented the intermediate steps of one data-flow path as witness. At the end, the
TaintBench suite consists of 39 benchmark apps with 203 expected and 46 unexpected taint
flows. We developed a few tools, introduced in the next section, to support this process. More
details about the evaluation is given in Section 2.5.1.2.

2.5.1.1 The TaintBench Suite

Our TaintBench suite contains 39 benchmark apps with 249 documented benchmark cases in
total as shown in Table 2.4. 203 of them are expected taint flows. 149 expected taint flows were

Table 2.4: Summary of the TaintBench benchmark suite.

No. Name E. U. No. Name E. U.
1 backflash 13 11 21 proxy_samp 17 3
2 beita_com_beita_contact 3 0 22 remote_control_smack 17 0
3 cajino_baidu 12 3 23 repane 1 0
4 chat_hook 12 1 24 roidsec 6 0
5 chulia 4 0 25 samsapo 4 1
6 death_ring_materialflow 1 0 26 save_me 25 6
7 dsencrypt_samp 1 0 27 scipiex 3 0
8 exprespam 2 0 28 slocker1 5 0
9 fakeappstore 3 0 29 sms_google 4 0
10 fakebank1 5 0 30 sms_send_locker_qqmagic 6 2
11 fakedaum 2 0 31 smssend_packageInstaller 5 0
12 fakemart 2 0 32 smssilience_fake_vertu 2 2
13 fakeplay 2 0 33 smsstealer_kysn_assassincreed1 5 0
14 faketaobao 4 0 34 stels_flashplayer_android_update 3 0
15 godwon_samp 6 0 35 tetus 2 0
16 hummingbad1 2 0 36 the_interview_movieshow 1 0
17 jollyserv 1 0 37 threatjapan_uracto 2 0
18 overlay1 4 2 38 vibleaker1 4 0
19 overlaylocker21 7 12 39 xbot1 3 0
20 phospy 2 3 Σ 203 46
E.: Number of expected taint flows, U.: Number of unexpected taint flows, 1: Suffix "_android_samp"

23

2.5 Real-World Benchmarking

Table 2.5: Overview of expected and unexpected taint flows according to source and sink Cat-
egories. New categories we added are marked with * when appearing for the first time in the
table.

Source Category Sink Category E. U.
ACCOUNT INFORMATION NETWORK 11
ACCOUNT INFORMATION INTENT 1
ACCOUNT INFORMATION FILE 2
ACCOUNT INFORMATION LOG 1
ACCOUNT INFORMATION DATABASE 2
CONTACT INFORMATION NETWORK 11 11
CONTACT INFORMATION INTENT 2
CONTACT INFORMATION SMS MMS 1
CRITICAL FUNCTION * CRITICAL FUNCTION * 2
DATABASE SMS MMS 3
DATABASE FILE 24
DATABASE NETWORK 19
DATABASE DATABASE 2 3
DATABASE LOG 3
DATABASE CRITICAL FUNCTION 1
FILE NETWORK 13 2
FILE FILE 1 1
FILE CRITICAL FUNCTION 5
FILE INTENT 3
FILE LOG 1
INTERNET SOURCE * SMS MMS 2
INTERNET SOURCE OTHER STORAGE * 1
LOCATION INFORMATION FILE 4
LOCATION INFORMATION NETWORK 4 2
NETWORK INFORMATION EMAIL 1
NETWORK INFORMATION LOG 1 1
NETWORK INFORMATION FILE 1
NETWORK INFORMATION NETWORK 9
NETWORK INFORMATION SMS MMS 1
OTHER DATA * NETWORK 1
OTHER DATA LOG 7 1
OTHER DATA CRITICAL FUNCTION 6
OTHER DATA INTENT 2
SMS MMS SMS MMS 5
SMS MMS NETWORK 11
SMS MMS INTENT 6 2
SMS MMS LOG 1
SMS MMS FILE 1
SMS MMS CRITICAL FUNCTION 1
SYSTEM SETTINGS NETWORK 3
SYSTEM SETTINGS CRITICAL FUNCTION 1 1
UNIQUE IDENTIFIER FILE 1
UNIQUE IDENTIFIER NETWORK 25 6
UNIQUE IDENTIFIER LOG 3
UNIQUE IDENTIFIER EMAIL 1
UNIQUE IDENTIFIER CRITICAL FUNCTION 3 6
UNIQUE IDENTIFIER SMS MMS 2
E.: Number of expected taint flows, U.: Number of unexpected taint flows

24

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

discovered by us manually as described in last section. During the evaluation with the benchmark
apps, we also inspected taint flows which were reported by both FlowDroid and Amandroid
manually. Thereby additional 54 expected and 46 unexpected taint flows were added to the
suite. We will introduce more details about this in Section 2.5.1.2. Each benchmark app comes
with the following assets in its own GitHub repository:

• the APK file,

• the decompiled source code project,

• the baseline definition (TAF-file),

• a profile file about the benchmark app containing statically extracted information including
target platform version, permissions, sensitive APIs, behavior description, etc.

All artifacts are publicly available at: https://TaintBench.github.io
To give more detail on the taint flows in TaintBench, we classified the flows based on their

behaviors according to their source and sink categories as shown in the Table 2.55. We reused the
categories defined in the SuSi paper [RAB14] and MUDFLOW paper [AKG+15]. We also added
new categories such as INTERNET SOURCE and CRITICAL FUNCTION, since our suite includes types
of malicious taint flows beyond data leaks, such as Path Traversal (CWE-22), Execution with
Unnecessary Privileges (CWE-250) and Use of Potentially Dangerous Function (CWE-676).6
The categorization of the sources and sinks was first done by the lead author. To enhance the
reliability, the third author checked and discussed the assigned categories with the lead author
whenever there were disagreements. Consensus was achieved for the final categorization.

2.5.1.2 Evaluation of the TaintBench Suite

We present our evaluation of the TaintBench suite by answering the following research ques-
tion: How does TaintBench compare to DroidBench and Contagio?

To answer this question, we evaluate the TaintBench suite with regard to the two aspects
of representativeness introduced in Section 2.3: First, we evaluate the expected taint flows in
TaintBench and compare them to those in DroidBench in terms of language and framework
features involved in the flows. Second, we compare the benchmark apps in TaintBench to the
apps in DroidBench and the whole Contagio dataset with a set of metrics.

Comparison of Taint Flows As introduced in the representativeness criterion in Section 2.3,
one of our goals for TaintBench is to include taint flows which address different language
and framework features (attributes). The numbers of expected taint flows involving different
language and framework features are listed in Table 2.6. The attributes of each taint flow are
assigned by us and TB-Profiler as mentioned in Section 2.4. Through these attributes the
taint flows can be categorized and also mapped to the majority (11/18) of the DroidBench’s
categories as shown in Table 2.6. Categories of DroidBench such as “Android Specific” [Dro16]
are not uniquely relatable.

5More detailed information of each flow can be https://taintbench.github.io/img/data/Sources_Sinks_
Category_Stats.pdf

6CWEs can be found at https://cwe.mitre.org

25

https://TaintBench.github.io
https://taintbench.github.io/img/data/Sources_Sinks_Category_Stats.pdf
https://taintbench.github.io/img/data/Sources_Sinks_Category_Stats.pdf
https://cwe.mitre.org

2.5 Real-World Benchmarking

Table 2.6: Attributes associated to expected taint flows in TaintBench.

Attribute Description DB Category # Flows
nonStaticField sensitive values stored in non-static fields Field and Object Sensitivity 61
staticField sensitive values stored in static fields Field and Object Sensitivity 31
reflection refection APIs called Reflection 5
array sensitive values stored in arrays Arrays and Lists 39
collections sensitive values stored in Java collection objects Arrays and Lists 67
threading threading mechanisms involved Threading 80
appendToString sensitive values appended to Strings General Java 99
callbacks callbacks for UI interactions Callbacks 23
lifecycle lifecycle methods involved Lifecycle 104
payload malicious payload is downloaded at runtime Dynamic Loading 5
ICC inter-component communication involved ICC 49
IAC inter-app communication involved IAC 2
implicitFlows∗ implicit flows Implicit Flows 6
pathConstraints+ path conditions must be satisfied – 74

∗Cannot automatically be assigned by TB-Extractor, +No mapping category in DroidBench (DB).

Moreover, most expected taint flows in TaintBench address multiple (up to 8) features at
the same time as shown in the histogram in Figure 2.5. This is not modeled in DroidBench.
The majority (175/203) of expected taint flows in TaintBench address multiple features at the
same time rather than a single one as designed in DroidBench.

0 1 2 3 4 5 6 7 8
0

20

40

#Attributes in a taint flow

#E
xp

ec
te

d
Ta

in
t fl

ow
s

Figure 2.5: Distribution of attributes.

Comparison of Benchmark Apps We compare the benchmark apps in TaintBench to
apps in DroidBench as well as to the entire Contagio dataset (from which TaintBench apps
are sampled) in three aspects: (i) the usage of sources and sinks, (ii) call-graph and (iii) code
complexity. For each aspect, we used a set of metrics for a quantitative evaluation.

Usage of Sources and Sinks: The usage of sources and sinks is a predictor of how many
data-flow propagations starting from sources/sinks (depending on forward/backward analysis)
are required to capture all possible taint flows. Thus, we quantify the usage of sources and sinks
with the following metrics:

• #Sources/Sinks: number of different source/sink APIs appeared in a benchmark app.

• #Usage Sources/Sinks: number of different code locations where source/sink APIs are
used in a benchmark app.

26

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

To measure these metrics, we first compiled a list of potential source and sink APIs. This
list consists of three parts: (i) sources and sinks from SuSi [RAB14] GitHub repository; (ii)
sources and sinks detected by the machine-learning approach SWAN [PDB19] when applying
it to Android platform jars (API level 3 to 29); (iii) sources and sinks documented in both
TaintBench and DroidBench. Based on this list, we computed the values of above metrics
for each app.

Table 2.7: Usage of sources and sinks.

#Usage #Usage
#Sources Sources #Sink Sinks

DroidBench
min 0 0 1 1
max 8 27 13 22
geomean 2.2 2.4 2.8 3.3

TaintBench
min 4 9 6 13
max 514 4,284 369 3,486
geomean 49 149 38.4 133.2

Contagio
min 2 2 0 0
max 699 8,044 495 7,870
geomean 55.1 201.6 43.7 182.0

The summarized results are shown in Table 2.7. We report the minimum, the maximum,
and the geometric mean7 of each suite and the Contagio dataset. We use geometric mean rather
than arithmetic mean, because it can dampen the effect of outliers and is more representative of
a dataset with the differences of data points varying by multiples of 10. Clearly, TaintBench
employs more usages of sources and sinks than DroidBench, since all values of TaintBench
are at least six times higher than those of DroidBench. In addition, the geometric means of
TaintBench are in the same order of magnitude as for the entire Contagio dataset. Especially
regarding the number of different sources and sink APIs that appeared in an app, the difference
between TaintBench and Contagio is less than 6. In conclusion, this indicates that a tool
must be scalable to handle more data-flow propagations on TaintBench to achieve equally
good results as on DroidBench.

Call-graph Complexity: One of the most important tasks for inter-procedural analysis is
to construct the call graph. We use AndroGuard [And11] to generate context-insensitive call
graphs. To compare fairly, we excluded call graph edges from Android platform APIs to the
actual application and edges between Android platform APIs themselves. Based on the resulting
sub call graph, we compute:

• Call Graph Size (CG Size): Number of edges in the call graph.

• Maximal Call Chain Length (Max. CCL): Number of edges in the longest acyclic call
chain [RKG04, EHMG15]. A call chain is a sequence of call graph edges e1, ..., ek such
that the target node of ei is the same as the source node of ei+1 for 1 ≤ i < k [RKG04]. Our
algorithm to compute Max. CCL is to perform a depth first search for each entry point
detected by AndroGuard. We handle the cycles in the call graph as follows: whenever a

7When there are 0s in the dataset, we computed the geomean of all positive numbers.

27

2.5 Real-World Benchmarking

visited node is seen twice in a call chain, we break the search. For a call chain with cycle
(1,2), (2,3), (3,1), (1,3), (3,1), (1,3), ..., the length of the call chain is 2.

• Longest Cycle Size (LC Size): Number of edges in the longest cycle in the call graph.

The call-graph comparison is shown in Table 2.8. The geometric mean indicates, that call graphs
in TaintBench are much larger and more complex than in DroidBench. In comparison to
the entire Contagio dataset, the call graphs in TaintBench are smaller. However, as shown in
Table 2.9, the minimum, maximum and geometric mean of analysis time used by FlowDroid
for an app in TaintBench is almost the same as the time required with respect to the entire
Contagio set.

Table 2.8: Call-graph complexity.

CG Max. LC
Size CCL Size
DroidBench

min 11 1 0
max 144 4 0
geomean 27.28 1.4 0

TaintBench
min 112 1 0
max 83,981 16 31
geomean 1,895.68 4.79 3

Contagio
min 43 0 0
max 139,298 44 31
geomean 2,599.6 6.3 2.5

While the call graphs in DroidBench have no cycles (recursions), since the values of LC
size are all zeros, the call graphs in TaintBench include even large cycles (LC size up to 31).
Recursion is considered as an important problem that needs to be solved in a context-sensitive
analysis. The absence of it in DroidBench makes it impossible to evaluate the implemented
solution for handling recursions. Max. CCL can be seen as an indicator for the choice of context
string length (call string length) of a context-sensitive analysis. If the context string length is
chosen too small, the analysis can lose precision and soundness. When the length is too big,
the analysis may not scale. To build a scalable context-sensitive analysis that produces proper
results, the context string length for a best trade-off between precision and scalability may be
easy to find for DroidBench with Max. CCL varying from 1 to 4, however, it is much more
difficult to find the best fit in TaintBench, since the maximum is up to 16.

Table 2.9: Analysis time(s) measured for FlowDroid and Amandroid.

FlowDroid Amandroid
TaintBench Contagio TaintBench Contagio

min 2.5 2.3 16.2 0.6
max 361.6 361.6 762 6,949.3
geomean 8.5 8.2 71.8 113.8

Code Complexity: We compare TaintBench and DroidBench by computing the fol-
lowing Chidamber and Kemerer (CK) metrics [CK94]: Coupling between object classes (CBO),

28

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

Table 2.10: Comparing code complexity with CK metrics.

Metrics CBO DIT RFC WMC NF NSF
DroidBench

min-sum 2 2 4 1 0 0
max-sum 29 17 48 32 27 15
geomean-sum 6.77 5.26 11.01 4.07 5.12 5.99
min-avg 0.2 1.08 0.4 0.09 0 0
max-avg 10 2.67 25 16 11.5 3.25
geomean-avg 2.03 1.57 3.3 1.22 1.09 0.85

TaintBench
min-sum 11 4 43 14 3 0
max-sum 19,597 5,533 32,661 46,251 10,644 3,354
geomean-sum 653.77 223.8 1,528.58 1,860.69 359.13 145.89
min-avg 2.53 1.25 7.28 3.57 0.75 0
max-avg 7.55 2.45 30 27.64 5.94 2.45
geomean-avg 4.52 1.55 10.56 12.85 2.48 0.92

Depth of Inheritance Tree (DIT), Response for a Class (RFC) and Weighted Method per Class
(WMC). These were often used to evaluate software complexity [PRL+19, BGH+06]. Beside the
CK metrics, we also compare number of fields and static fields in the benchmark apps. We used
the ck tool [Mau15] on the source code project of each benchmark app to calculate the metrics.
The results regarding the CK metrics are listed in Table 2.10. All measurements show that
TaintBench benchmark apps are more complex than DroidBench benchmark apps. While
this is not surprising, we find it important to compute these numbers for future reference.

2.5.2 Part 2—Evaluation with the TaintBench Suite

In this section, we present our evaluation of Android taint analysis tools on TaintBench and
answer the following research questions:

• How effective are taint analysis tools on TaintBench compared to DroidBench?

• What insights can we gain by evaluating analysis tools on TaintBench?

Tool and Benchmark Selection: We evaluated two taint analysis tools, namely Aman-
droid and FlowDroid. These two tools were chosen because they lately scored best in two
independent studies [PBW18, QWR18] when evaluated on DroidBench and they are based
on distinct analysis frameworks. Two different versions of both tools are employed: (1) the
respective up-to-date version, and (2) the version used by Pauck et al. [PBW18] in order to
compare our reproduced values to theirs. In the following, we mark the current tool versions
by a *-symbol as shown in Table 2.11. TaintBench and DroidBench (3.0) are selected as
benchmark suites for all the experiments. Note, because both tools cannot analyze inter-app
communication scenarios, the related benchmark cases of DroidBench are not considered in
our setup.

29

2.5 Real-World Benchmarking

Table 2.12: Descriptions of experiments.

Experiment ID Description Comparable
DB1 Default configuration; evaluated on DB 4Experiment 1 TB1 Default configuration; evaluated on TB 4

DB2 Sources & sinks w.r.t. DB (Suite-Level) 4Experiment 2 TB2 Sources & sinks w.r.t. TB (Suite-Level) 4

Experiment 3 TB3 Sources & sinks w.r.t. TB (App-Level) 4

Experiment 4 TB4 Sources & sinks w.r.t. TB (Case-Level) 4

Experiment 5 TB5 w.r.t. minified apps per TB case 8

Experiment 6 TB6 w.r.t. delta apps per TB case 8

Table 2.11: Tools evaluated.

Tool Version
Amandroid [Ama17] November 2017 (3.1.2)
Amandroid* [Ama18] December 2018 (3.2.0)
FlowDroid [Flo17] April 2017 (Nightly)
FlowDroid* [Flo19] January 2019 (2.7.1)

* Up-to-date tool versions.

Evaluation Objectives: In the context of TaintBench, we focus on evaluating analysis
accuracy in terms of precision, recall and F-measure but less on analysis time.

Execution Environment: The TaintBench framework was setup on an Debian (9 –
Stretch) virtual machine with two cores of an Intel©Xeon®CPU (E5-2695 v3@2.30GHz), 128
GB memory and Java 8 (Oracle 1.8.0_231) installed. 96 GB memory were reserved for the
analysis tools.

Experiments: Table 2.12 lists all conducted experiments. The first column ID refers to
the benchmark suite and experiment number (e.g., TB2 refers to Experiment 2 w.r.t. Taint-
Bench). This ID is used throughout the whole section. The second column provides a brief
description of each experiment. The last column indicates the comparability of experimental
results. Accordingly, the results of all experiments except TB5 and TB6 are comparable with
one another.

We first conducted all experiments with the 149 expected taint flows identified by us manually
in the benchmark construction phase as described in Section 2.5.1. Afterwards, we manually
checked and rated newly discovered taint flows reported by all tools in TB3 and added them
as expected and unexpected taint flows into the baseline and re-ran all experiments. In the
following, we report the results using the final baseline of the TaintBench suite presented in
Table 2.4.

2.5.2.1 Experiment 1 (DB1 & TB1):

The tools are executed in their default configuration. Figure 2.6 presents precision, recall and
F-measure for DroidBench and TaintBench in column DB1 and TB1, respectively.

The results obtained for FlowDroid and Amandroid in configuration DB1 are identical to
those in the ReproDroid study [PBW18], replicating the results obtained there.

The metrics in Figure 2.6 are calculated based on their formulas introduced in Section 2.1
and Table 2.13, which also shows the expected cases and unexpected cases defined for each

30

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

benchmark suite. The evaluation is based on these cases only. Although the baseline definition
of TaintBench contains 203 expected and 46 unexpected taint flows, ReproDroid can only
reflect 186 expected cases and 35 unexpected cases, since it does not distinguish different flows,
when the sources and sinks look exactly the same in Jimple. Jimple statements are not differen-
tiable (by their textual representation) if they (1) occur in the same method of the same class,
(2) use variables with the exact same names as well as constants with the same contents, (3)
and refer to the same source code line number. As the figure shows, the precision of Aman-
droid is dramatically decreased to 50% when evaluated on TaintBench. It only found 4 flows
in our baseline and 2 of them are false positives. The precision of Amandroid* stays almost
unchanged, however, this is calculated only from 6 flows. In contrast, the precisions of both
FlowDroid and FlowDroid* are high (over 90%). However, on TaintBench all tools show
a significantly lower recall and F-measure than for DroidBench. In the default configuration
most taint flows in TaintBench remain undetected. With 14% (26/186), FlowDroid’s recall
is still the highest.

0.87

0.5

0.804 0.8330.881
1

0.879 0.941

0
0.2
0.4
0.6
0.8
1

DB1 TB1

Precision

0.491

0.011
0.252

0.027

0.546

0.14

0.534

0.086

0
0.2
0.4
0.6
0.8
1

DB1 TB1

Recall

0.627

0.021

0.383

0.052

0.674

0.245

0.664

0.158

0
0.2
0.4
0.6
0.8
1

DB1 TB1

F-measure

Amandroid

Amandroid*

FlowDroid

FlowDroid*

Figure 2.6: Precision, Recall and F-measure of DB1 & TB1.

Table 2.13: Results of DB1 & TB1.

Benchmark
DroidBench TaintBench

Expected Unexpected Expected Unexpected
163 41 186 35

Tool DB1 TB1
TP FP TP FP

Amandroid 80 12 2 2
Amandroid* 41 10 5 1
FlowDroid 89 12 26 0
FlowDroid* 87 12 16 1

31

2.5 Real-World Benchmarking

2.5.2.2 Experiment 2 (DB2 & TB2):

To understand if the low recall values for TaintBench in Experiment 1 are mainly caused by the
tools’ source and sink configurations, we compared the different source and sink sets involved.
The results of this comparison are summarized in Table 2.14. Tool names refer to source and sink
sets defined in a tool’s default configuration. Benchmark suite names refer to the sets occurring
in their benchmark cases. While the upper part of the table row-wise shows the intersections
of these sets in terms of numbers of sources and sinks, the lower part enumerates sources and
sinks contained in one set A but not in another set B. The two rows labeled with TaintBench
show that (i) the sets of sources and sinks used by tools and DroidBench have only minor
intersections with the set of TaintBench; (ii) TaintBench holds at least 32 different sources
and 36 sinks (see column FlowDroid).

Table 2.14: Intersection and difference of source and sink sets.

A =
B = Amandroid FlowDroid DroidBench TaintBench

Sources Sinks Sources Sinks Sources Sinks Sources Sinks
Intersection (∣A ∩B∣)
Amandroid 30 42 24 38 4 8 6 4
FlowDroid 24 38 89 133 7 9 12 8
DroidBench 4 8 7 9 15 23 7 4
TaintBench 6 4 12 8 7 4 44 44
Difference (∣A ∖B∣)
Amandroid 0 0 6 4 26 34 24 38
FlowDroid 65 95 0 0 82 124 77 125
DroidBench 11 15 8 14 0 0 8 19
TaintBench 38 40 32 36 37 40 0 0

0.87 0.864

0.5
0.62

0.804 0.821 0.833

0.462

0.881 0.889
1

0.8940.879 0.888 0.941
0.745

0
0.2
0.4
0.6
0.8
1

DB1 DB2 TB1 TB2

Precision

0.491 0.583

0.011
0.1670.252 0.282

0.027 0.032

0.546 0.589

0.14

0.4520.534 0.583

0.086
0.22

0
0.2
0.4
0.6
0.8
1

DB1 DB2 TB1 TB2

Recall

0.627 0.696

0.021

0.263
0.383 0.42

0.052 0.06

0.674 0.708

0.245

0.60.664 0.704

0.158
0.34

0
0.2
0.4
0.6
0.8
1

DB1 DB2 TB1 TB2

F-measure

Amandroid

Amandroid*

FlowDroid

FlowDroid*

Figure 2.7: Precision, Recall and F-measure of DB1, DB2, TB1, TB2.

In consequence, we generated a list of sources and sinks for each benchmark suite based
on the comprised taint flows, using TB-Loader (see Section 2.4.2). These lists, generated on

32

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

the suite-level, are configured to be used by the two tools. As shown in Figure 2.7, when re-
configuring sources and sinks this way, the results for DroidBench are affected only slightly
(DB1 vs. DB2) but the recall and F-measure values for TaintBench are more than doubled
(TB1 vs. TB2). Nonetheless, even under this configuration the tools are still less effective on
TaintBench than on DroidBench. Closest is FlowDroid, which achieves a recall of 45%
(84/186) for TaintBench while reaching 59% (96/163) for DroidBench. While FlowDroid
reports 84 true positives, Amandroid and Amandroid* detect only 31 and 6 true positives in
TaintBench, respectively.

Surprisingly, on TaintBench the current tool versions (Amandroid* and FlowDroid*)
show a lower recall than their predecessors (Amandroid and FlowDroid). This argues for
the use of TaintBench also for regression testing.

For FlowDroid and FlowDroid*, the difference is small (1 or 2 flows) regarding Droid-
Bench. Considering TaintBench, FlowDroid* finds only half (41/84) of the true positives
that can be found by its old version even under the same source and sink configuration. In
addition, FlowDroid* is less precise, since it reports more false positives than FlowDroid
(14 vs. 10).

Table 2.15: Results of DB2 & TB2.

Benchmark
DroidBench TaintBench

Expected Unexpected Expected Unexpected
163 41 186 35

Tool DB2 TB2
TP FP TP FP

Amandroid 95 15 31 19
Amandroid* 46 10 6 7
FlowDroid 96 12 84 10
FlowDroid* 95 12 41 14

0.62 0.62 0.633
0.462 0.462 0.5

0.894 0.903 0.918
0.745 0.754 0.764

0
0.2
0.4
0.6
0.8
1

TB2 TB3 TB4

Precision

0.167 0.167 0.167
0.032 0.032 0.032

0.452 0.548 0.543

0.22 0.231 0.226

0
0.2
0.4
0.6
0.8
1

TB2 TB3 TB4

Recall

0.263 0.263 0.264
0.06 0.06 0.061

0.6 0.682 0.682

0.34 0.354 0.349

0
0.2
0.4
0.6
0.8
1

TB2 TB3 TB4

F-measure

Amandroid

Amandroid*

FlowDroid

FlowDroid*

Figure 2.8: Precision, Recall and F-measure of TB2-4.

33

2.5 Real-World Benchmarking

2.5.2.3 Experiment 3 & 4 (TB3 & TB4):

Since the results of Experiment 2 show that source and sink configurations affect the recall values
heavily, we conduct two more experiments in which sources and sinks are configured regarding
not just each suite but even each benchmark app (Experiment 3) and each benchmark case
(Experiment 4). To this end, we are now using smaller but more precise sets. We expected that
the results would be the same compared to Experiment 2, and this also holds for Amandroid(*)
as shown in Figure 2.8.

Surprisingly, FlowDroid and FlowDroid* find more taint flows in Experiment 3 and 4.
The number of true positives increases from 84 to 102 for FlowDroid and from 41 to 43
for FlowDroid* as Table 2.16 shows. This indicates that the configuration of “superfluous”
sources and sinks, which are actually irrelevant for a specific benchmark app or case, has
some shadow effect on the taint computation in FlowDroid and FlowDroid*.

Table 2.16: Results of TB2-6.

Benchmark
TaintBench

Expected Unexpected
186 35

Tool TB2 TB3 TB4 TB5 TB6
TP FP TP FP TP FP TP FP TP FP

Amandroid 31 19 31 19 31 18 29 4 8 42
Amandroid* 6 7 6 7 6 6 7 1 1 12
FlowDroid 84 10 102 11 101 9 59 8 51 62
FlowDroid* 41 14 43 14 42 13 28 5 23 34

2.5.2.4 Experiment 5 (TB5)

With this experiment we seek to test if the call-graph complexity of real-world apps in Taint-
Bench is a cause of some unsatisfactory results. To do so, irrelevant call-graph edges are
removed by MinApk-Generator (see Section 2.4.2.1). This leads to fewer timeouts in all
cases in Experiment 5 in comparison to Experiment 2 (cf. Table 2.17; −5 for Amandroid* and
−1 for all other tools). Overall, 27 new true positives are uniquely detected in Experiment 5.
12 of these by Amandroid and 8 by FlowDroid. The newer tools are less affected with 3
and 4 newly found true positives in case of Amandroid* and FlowDroid*. The fact that
Experiment 5 mostly simplifies the call graph indicates that the tools likely miss these flows in
the original benchmark apps due to incomplete call graphs.

However, the minified app created by MinApk-Generator is sometimes unsound (relevant
code is removed), causing the tools unable to detect some previously detected true positives.
Hence, the results of Experiment 5 look overall worse in Figure 2.8. Currently, the coauthor
Felix Pauck is working on improving the MinApk-Generator.

2.5.2.5 Experiment 6 (TB6)

With this experiment we check if the tools handle data sanitization properly. We use the
DeltaApk-Generator to kill each expected taint flow in the baseline definition (see Sec-
tion 2.4.2.1). If a previously detected true positive in Experiment 3 is still detected in the
respective delta APK (Experiment 6), this flow is a known false positive (TB3 vs. TB6). If the

34

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

tools were to fully handle the killing of flows, also known as “strong updates”, the results of
both experiments should be identical. This is not the case: both precision and recall decreased
(see TB6 in Figure 2.8). To this effect, and because of the adapted interpretation, the results
should not be compared to the experiments above.

The tools over-approximate the killing of taint flows, i.e., miss the ability to perform strong
updates, which produces a number of false positives on real-world apps.

2.5.2.6 Timeouts and Unsuccessful Exits

The maximal execution time per app is set to 20 minutes during all experiments. On Droid-
Bench (DB1, DB2), neither Amandroid(*) nor FlowDroid(*) reach this timeout. On
TaintBench, though, Amandroid* exceeds the timeout on 11 apps. All other tools rarely do
so (see Table 2.17). However, for one DroidBench and seven TaintBench apps FlowDroid*
claimed to find no analysis entry point, even though FlowDroid was able to find those — a
clear regression. In case of two other TaintBench apps FlowDroid* failed its analysis, since
it was unable to calculate callbacks. Consequently, on TaintBench FlowDroid* finds fewer
than half of the true positives that can be found by FlowDroid.

It is alarming that both newer tool versions fail to analyze a striking number of benchmark
apps, particularly where earlier analysis versions succeeded. This emphasizes that research
progress requires testing on more real-world benchmarks.

Table 2.17: Timeouts, unsuccessful exits and analysis time in experiment 2.

DroidBench (DB2) TaintBench (TB2)
AD AD* FD FD* AD AD* FD FD*

Timeouts 0 0 0 0 1 11 1 1
Unsuccessful Exits 0 0 0 1 0 0 0 9
Analysis Time (min) 58 61 20 13 98 41 17 5
↪ incl. Timeouts 58 61 20 13 118 261 37 27

AD: Amandroid, FD: FlowDroid

2.5.2.7 Analysis Time

In all scenarios, both versions of FlowDroid are faster than any version of Amandroid. With
respect to DroidBench, FlowDroid* is 35%8 faster than its predecessor (see Table 2.17).
Considering TaintBench, FlowDroid*’s speed-up is even larger (71%9). Amandroid* is not
faster than Amandroid on DroidBench but 58%10 faster in case of TaintBench. However,
the amount of timeouts thrown by Amandroid* and unsuccessful exits of FlowDroid* impede
a fair comparison. While new tool versions appear to be faster, the number of timeouts or
unsuccessful exits has risen.

835%=(20-13)/20
971%=(17-5)/17

1058%=(98-41)/98

35

2.5 Real-World Benchmarking

2.5.2.8 Reproducibility and Continues Benchmarking

The reproducibility of our experiments is guaranteed by ReproDroid. From our experiments,
we found out that newer tool versions performed worse than their predecessors when evaluating
on TaintBench. To help the tool authors avoid such regressions in the future, we aim to
provide a way in which Android taint analysis tools can be evaluated on TaintBench on a
continuous basis. We set up GitHub Actions [Git20] for both versions of Amandroid and
FlowDroid11. Using the TaintBench framework, we were able to configure the evaluation
of each tool as an automated workflow of Github Actions. The source and sink configuration
of each tool is at app-level as in Experiment 3 (see Table 2.12). The outcome of each workflow
includes a benchmark file computed by ReproDroid containing performance metrics (precision,
recall, F-measure, analysis time) and raw analysis results of the tool. Each workflow will be
triggered on pushes or pull requests to the TaintBench GitHub repository. This way we can
easily obtain performance improvements and regressions of newer tool releases evaluated on the
newest version of the TaintBench suite in the future.

2.5.3 Part 3—Inspection of the Analysis Results

2.5.3.1 Unexpected Behavior of FlowDroid*

With the help of TB-Viewer (see Section 2.4.3) displaying both the baseline findings and
analysis results in VS code, we made the following observation: One true-positive flow (A) is
detected by FlowDroid* in Experiment 3, but not in Experiment 4. Instead, in Experiment
4 a different true-positive flow (B) is detected12.

Considering flow (A), we found that FlowDroid* sometimes does not find a taint flow
(source → Child.sink) when Parent.sink was not declared in the list of sources and sinks,
where Child is a subclass of the class Parent. By intuition the reason seems to be that the flow
is only detected when Parent.sink is configured as in Experiment 3. Thus, when Parent.sink
is not configured in the list, the flow to Child.sink remains undetected as in Experiment 4.

Moreover, in case of (B) there are two flows (source1 → sink1) and (source2 → sink1)
with the same sink but FlowDroid* reports only one of them in Experiment 3. However, the
internal analysis of FlowDroid* is actually capable of finding both flows in Experiment 4,
namely, the new true positive (B) is detected. After a closer investigation, we found out that
when more sources and sinks than the source and sink of the expected taint flow are configured
for FlowDroid* (Experiment 3) one sink overshadows the other. The order of the relevant
sources and sinks appear on two parallel paths in the inter-procedural control-flow graph (ICFG).
These path can be illustrated as follows:

path1: source1 → sink2 → sink1

path2: source2 → sink1

In Experiment 3, two flows are found: (source1 → sink2), (source2 → sink1). However,
the expected one (source1 → sink1) remains undetected which is not the case in Experiment
4. Because sink1 appears later than sink2 in path1, we think that FlowDroid* stops the
propagation of taints from source1 when the taints reach sink2. We reported our findings to
the tool maintainers.

11More information can be found on https://taintbench.github.io/ci
12A: Flow with ID=1 in overlay_android_samp. B: Flow with ID=7 in cajino_baidu.

36

https://taintbench.github.io/ci

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

43
21%

28
14%

42
21%

90
44%

TPs

Type-1 FNs (No entry point is
detected)

Type-2 FNs (Relevant
methods are not in the call
graph)

Type-3 FNs (Unknown)

Figure 2.9: Overview of true positives (TPs) and false negatives (FNs) from the evaluation of
FlowDroid on TaintBench. In TaintBench, there are 203 expected taint flows, Flow-
Droid only detected 43 (21%) of them.

2.5.3.2 Case Study of FlowDroid’s False Negatives

To understand why Android taint analysis tools failed to detect taint flows in the TaintBench
suite, we further investigated FlowDroid, since it has a better recall than Amandroid. The
version we used is 2.7.1, since its source code is still available and this allows us to debug into
it. Although the nightly build from April 2017 listed in Table 2.11 achieved a better recall
on TaintBench, we could not find its source code. In the following, when we talk about
FlowDroid, we mean the version 2.7.1. Note that the case study on FlowDroid’s false
negatives presented in this section was not included in our journal paper [LPP+21].

After case studies of a few undetected taint flows, we noticed that FlowDroid failed to
even find the entry points of the respective benchmark apps of these flows. Thus, we extended
FlowDroid to capture the call graphs used in its taint analysis. The extension dumps a
serialized call graph in JSON-format for each analyzed app. We ran the extended FlowDroid
on TaintBench. The source sink configuration is at app-level as in the experiment TB3 in
Table 2.12. We compared the methods appearing on the documented taint flows in TaintBench
to the edges in the call graph, and we found out that 70 out of 203 expected taint flows could
not be detected, since relevant methods are not present in the call graphs.

Having incomplete call graphs is at least one reason why FlowDroid failed to detect these
flows. Figure 2.9 shows the proportions of true positives and false negatives from the evaluation
of FlowDroid on TaintBench. Among the 70 false negatives due to incomplete call graphs,
FlowDroid could not even detect the entry points for 28 of them, thus no dummy main method
was constructed at all. We call these false negatives the Type-1 false negatives (Type-1 FNs).
For the remaining 42, some relevant methods for these flows are missing in the call graph. We

37

2.5 Real-World Benchmarking

Table 2.18: Type-1 and Type-2 false negatives in TaintBench.

(a) Type-1 False Negatives

Benchmark App No. of False Negatives Flow ID
chulia 4 1, 2, 3, 4
fakeappstore 3 1, 2, 3
fakemart 2 1, 2
godwon_samp 6 1, 2, 3, 4, 5, 6
samsapo 4 1, 2, 3, 4
slocker_android_samp 5 1, 2, 3, 4, 5
sms_google 4 1, 2, 3, 4
Σ 28

(b) Type-2 False Negatives

Benchmark App No. of False Negatives Flow ID
chat_hook 1 12
fakedaum 1 1
fakeplay 2 1, 2
hummingbad_android_samp 2 1, 2
overlaylocker2_android_samp 6 1, 2, 3, 4, 5, 6
remote_control_smack 17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
repane 1 1
save_me 1 23
scipiex 2 1, 2
smsstealer_kysn_assassincreed_android_samp 2 4, 5
the_interview_movieshow 1 1
vibleaker_android_samp 4 1, 2, 3, 4
xbot_android_samp 2 1, 2
Σ 42

call these 42 false negatives Type-2 false negatives (Type-2 FNs). The respective benchmark
apps of Type-1 and Type-2 false negatives are listed in Table 2.18. We denote the other 90
false negatives as Type-3 false negatives (Type-3 FNs) and the reasons why these flows were not
detected by FlowDroid are still unknown.

Cause of Type-1 FNs To understand why FlowDroid could not detect any entry point in
the benchmark apps of Type-1 FNs, we debugged into FlowDroid as it analyzed these apps.
We found out that when FlowDroid parses the AndroidManifest.xml file to search entry point
classes, it uses the method ProcessManifest.checkAndAddComponent() to validate whether an
entry point class is in system namespaces such as android, com.google, etc. The validation
method SystemClassHandler.isClassInSystemPackage is shown in Listing 2.5, which simply
compares the prefix of the class name to a few hard-coded namespaces. Although Google Play
forbids the namespaces com.example and com.android[Goo21], these namespaces are not for-
bidden in the build process of Android apps. Malware apps often use such namespaces to bypass
security analysis tools. For example, the benchmark app godwon_samp uses android.sms.core
as its package name, which is absolutely legal. There has been some discussions under this
GitHub issue 13 regarding this problem. The main author of FlowDroid Steven Arzt ex-
plained “the general idea behind the heuristic was to save analysis time and memory by not
looking into components that have not been implemented by the app developer, but that are
rather part of the Android framework or some commonly used library.” However, this heuristic
can be leveraged easily by malware apps, as we have shown. Thus, we propose to consider all
components as entry point classes if no entry point class could be detected using the current
heuristic, since it is likely that the analyzed app is malware. A pull request 14 regarding this
change has been merged into the develop branch of FlowDroid.

13https://github.com/secure-software-engineering/FlowDroid/issues/171
14https://github.com/secure-software-engineering/FlowDroid/pull/329

38

https://github.com/secure-software-engineering/FlowDroid/issues/171
https://github.com/secure-software-engineering/FlowDroid/pull/329

Chapter 2. Real-World Malware Benchmarking of Android Taint Analyses

1 public static boolean isClassInSystemPackage(String className) {
2 return className.startsWith("android.") || className.startsWith("java.")
3 || className.startsWith("javax.")|| className.startsWith("sun.")
4 || className.startsWith("org.omg.")|| className.startsWith("org.w3c.dom.")
5 || className.startsWith("com.google.")|| className.startsWith("com.android.");
6 }

Listing 2.5: The validation method SystemClassHandler.isClassInSystemPackage checks if
a class is in system packages.

2.6 Threats to Validity

The external validity of the TaintBench suite is threatened by the fact that we were forced
to exclude obfuscated applications. Also, while all taint specifications have been checked mul-
tiple times by at least three authors, there is the potential threat that the baseline definition
nonetheless misses some actual taint flows (expected cases).

The internal validity of the TaintBench suite is impeded by the time that has passed since
the malware apps were created. These malware apps do not target the latest Android API
level. Nevertheless, we were able to install and execute almost all of the benchmark apps15 on a
Nexus 4 Android emulator with API level 25. Anyway many apps composed in the TaintBench
suite are not functional anymore, since they have been communicating with public servers which
are not accessible anymore. Most likely the servers were actively taken down when the apps
were identified as malware by researchers and field experts. Because of this, only parts of
TaintBench can be used to benchmark dynamic taint analysis tools. This in turn embodies
another reason, why dynamic tools could not be used to verify our baseline definition.

Note, this work focuses on the construction and evaluation of our novel benchmark suite;
an in-depth investigation of reasons for our findings in the tools’ implementations exceeds the
scope of this work. During our experiments we noticed that FlowDroid’s results are non-
deterministic (two runs of FlowDroid(*) with the same inputs produce different results).
This is a known issue first mentioned by Benz et al. [BKKL+20], which has not yet been fixed.
This issue is hardly notable in DroidBench experiments but well recognizable when analyzing
larger apps as in TaintBench.

Regarding our experiments using TaintBench, we are aware of the internal threat caused
by the measurement used in ReproDroid. If there are two source or sink statements at different
positions in the source code (e. g., s=source() at line 5 and s=source() at line 10 in a method
foo()), which look identical in Jimple, ReproDroid cannot distinguish them due to missing
exact code locations in the results produced by the taint analysis tools. Thus, if one of them
is detected, ReproDroid regards both flows as detected. In consequence, the actual recall on
TaintBench might be lower than observed. This issue could be mitigated if the analysis tools
were to include unique statement identifiers e. g., line numbers in their results. We added this
functionality to FlowDroid for future releases. The related pull request is already merged.16

2.7 Conclusion

In this chapter, we first proposed a catalog of criteria for constructing real-world benchmark
suites for Android taint analysis. We introduced the TaintBench framework, which allows
tool-assisted benchmark suite construction, evaluation and inspection. Using this framework,

15Except the app cajino_baidu
16https://github.com/secure-software-engineering/FlowDroid/pull/222

39

https://github.com/secure-software-engineering/FlowDroid/pull/222

2.7 Conclusion

we constructed, based on the criteria, the first real-world malware benchmark suite with a doc-
umented baseline: TaintBench (39 malware apps with 203 expected and 46 unexpected taint
flows documented in a machine-readable format). We compared TaintBench to DroidBench
with respect to various aspects. Evaluation of current and previously evaluated versions of
FlowDroid and Amandroid using TaintBench reveals insights that could not be gained
with the micro benchmark DroidBench. The associated experiments revealed surprising facts
about taint analysis tools:

• Android taint analysis tools have difficulties in detecting real-world taint flows in malware
apps, yielding very low recall.

• For Amandroid the situation is particularly bad: the latest version detects almost no
taint flow.

• While FlowDroid shows better recall, a configuration using superfluous sources and
sinks that are actually irrelevant for specific taint flows has a shadow effect on its taint
computation, causing it to miss some actual flows.

• For both Amandroid and FlowDroid, new tool releases are less accurate than their pre-
decessors: as we have shown in Experiments 2, 3 and 4, new releases have lower precision,
recall and F-measure.

• Our in-depth investigation on FlowDroid reveals that many false negatives were due to
incomplete call graphs.

Incomplete call graphs as one main cause of the false negatives motivated us to design a new
call graph construction approach that aims to produce more complete call graphs. This work
will be introduced in the next chapter.

40

GenCG: A General Approach to Modeling
Java Framework Behaviors

3
In the previous chapter, we introduced the benchmark suite TaintBench for real-world Android
taint analysis benchmarking. Our evaluation of popular static analysis tools using TaintBench
has shown that these tools have shortcomings in detecting real-world issues. Our investigation
on FlowDroid reveals that incomplete call graphs are one major reason why FlowDroid
failed to detect malicious taint flows in TaintBench. Call graphs are major building blocks
for static analyses. To be scalable, most static analysis tools including FlowDroid choose to
construct application-only call graphs and carefully model the behavior of frameworks. However,
such carefully crafted models often produce incomplete call graphs, and are impractical to do
for every framework, since that would require careful study of each framework’s documentation
and even the source code. This chapter addresses this problem and answers the fundamental
research question: How can one construct sound application-only call graphs without precisely
modeling the Java frameworks? Especially, the constructed call graphs should allow a precise
client taint analysis effectively finding real-world issues.

In this chapter, we present GenCG, a general approach to modeling Java framework behav-
ior. While a general approach can be noisy (produces many false positives), our experiments
show that our carefully-constructed one does not sacrifice the precision. We evaluated our ap-
proach with both DroidBench and TaintBench. It works especially well on our real-world
benchmark suite TaintBench: both the precision (from 0.83 to 0.88) and the recall (from 0.20
to 0.32) of FlowDroid are improved using the call graphs constructed with our approach. On
DroidBench, we were not expecting significant difference in the recall, as the false negatives
produced by FlowDroid are not mainly caused by incomplete call graphs in these micro bench-
mark apps. Still the recall is improved, as our approach allowed FlowDroid to detect more
taint flows. It produced a few more false positives as we expected for such a general approach.
Nevertheless, the precision is only slightly decreased (from 0.87 to 0.82). To show its general-
izability, we introduce how our approach can be applied to web applications using the Spring
framework. The evaluation with a micro benchmark suite of 42 Spring-based web applications
we created shows promising results.

The outline of the chapter is as follows: Section 3.1 motivates the work with an example
of malicious taint flow from TaintBench which both FlowDroid and Amandroid failed to
report. Necessary background is introduced in Section 3.2. In Section 3.3, we discuss problems
of an existing approach on which our work is based. Section 3.4 explains how our approach
addresses these problems. Section 3.5 presents the application of our approach on the Android
framework and its evaluation with a client taint analysis. Section 3.6 discusses the application of
our approach to the Spring framework. We compare our work to existing work in Section 3.7 and

41

3.1 A Motivating Example

discuss the limitations in Section 3.8. Section 3.9 concludes the chapter. Most work described
in this chapter is unpublished. An early conception of the work is published in my ESEC/FSE
paper for the ACM Student Research Competition [Luo21] and won the second place.

3.1 A Motivating Example

Listing 3.1 shows a data leak from the fakedaum app in our TaintBench suite. Two An-
droid components are involved in this leak: an activity MainActivity (line 1-15) and a service
TaskService (line 24-38). This leak leverages the Inter-Component Communications (ICC) to
exchange sensitive data between the activity and the service.

The activity MainActivity reads user’s last known location in the lifecycle method onStart()
(line 6) and stores it into the field msg (line 7). Later in the lifeycle method onPause() of the ac-
tivity, the msg containing the location is passed to an intent that starts the service TaskService
(line 12-13).

The service TaskService uses a handler PushMessageHandler to perform asynchronous
tasks. The msg containing the location is read from the intent and is encapsulated in a Message
object for the handler (line 31-32). This Message object is sent to the handler through the
sendMessage(Message)method (line 33) and is processed later in the handleMessage(Message)
method called by the Android framework. In the handleMessage(Message) method, the last
known location is leaked to a malicious server (line 53).

To detect this leak, a taint analysis tool needs to:

1. generate a sound call graph that captures all calling relationships on the data-flow path
of this leak;

2. handle the ICC-link between the activity and the service;

3. analyze (i. e., analyze the code of the callee) or understand (i. e., does not analyze the code
of the callee, but considers the effect of the call) library calls that can generate or kill
taints.

The first requirement is crucial, because missing call edges will break the taint propagation of
the analysis and result in false negatives. The essential subgraph of the actual call graph of the
motivating example is illustrated in Figure 3.1. Because the call graph itself does not encode the
order of the calls, we numerate the nodes in this graph to indicate the order when the call happens
at runtime. As we can see in Figure 3.1, some of the edges in the call graph are coming from
the Android framework. Taint analysis tools typically choose to create models of the Android
framework rather than analyzing the framework code itself. This makes the completeness of the
model very important. In the motivating example, a handler PushMessageHandler is used to
schedule tasks to be executed on a separate thread than the main UI thread. The sendMessage
method at line 33 enqueues a message containing sensitive data that will be processed by the
PushMessageHandler.handleMessage() method. The call to this handleMessage method from
the Android framework is not introduced by FlowDroid’s model of Android. In Figure 3.1,
the red dashed edges denote missing calls caused by this incomplete modeling. In the following
section, we introduce how FlowDroid models the Android framework and other necessary
background.

42

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

1 public class MainActivity extends Activity {
2 private Msg msg = new Msg();
3 public void onCreate(Bundle savedInstanceState) {...}
4 public void onStart() {
5 //...
6 Location loc = lm.getLastKnownLocation("network"); // 1. source: read last known location
7 this.msg.setContent(loc.toString()); // 2. store location to field msg
8 }
9 public void onPause() {

10 super.onPause();
11 Intent intent = new Intent(this, TaskService.class);
12 intent.putExtra("data", this.msg); // 3. store location to intent
13 startService(intent); // 4. start TaskService
14 }
15 }
16 public class Msg {
17 private String c;
18 public void setContent(String str){
19 this.c = str;
20 }
21 }
22 public class TaskService extends Service {
23 private LooperThread looperThread;
24 private Handler handler;
25 public void onCreate() {
26 //...
27 looperThread.start();
28 }
29 public int onStartCommand(Intent intent, int flags, int startId) {
30 handler = looperThread.handler;
31 Msg m = (Msg) intent.getSerializableExtra("data"); // 5. get location from the intent.
32 Message msg = handler.obtainMessage(1000, m); // 6. encapsulate location into a Message object
33 handler.sendMessage(msg); // 7. send the msg with location to a handler
34 return super.onStartCommand(intent, flags, startId);
35 }
36 }
37 public class LooperThread extends Thread {
38 private Looper looper;
39 private Context context;
40 protected Handler handler;
41 public void run() {
42 //...
43 handler = new PushMessageHandler(context, looper);
44 }
45 }
46 public class PushMessageHandler extends Handler {
47 String url = "http://103.30.7.178/upMsg.htm";
48 public void handleMessage(Message msg) {
49 try {
50 List<NameValuePair> pars = new ArrayList<>();
51 pars.add(new BasicNameValuePair("loc", new Gson().toJson(msg.obj)));
52 httppost.setEntity(new UrlEncodedFormEntity(pars, "UTF−8"));
53 httpclient.execute(httppost); // 8 sink: send the last known location to a malicious url.
54 } catch (...) {...}
55 }
56 }

Listing 3.1: The motivating example: in MainActivity, the last known location is stored in the
intent that starts the background service TaskService. Once the TaskService is started, the
last known location is read from the intent and leaked to a malicious server through the handler
PushMessageHandler.

43

3.2 Background

Android

11: LooperThread.
start()

12: LooperThread.
run()

15: Intent.
getSerializableExtra()

16: PushMessageHandler.
obtainMessage()

17: PushMessageHandler.
sendMessage()

19: HttpClient.
execute()

13: PushMessageHandler()

Java

8: MainActivity.
startService()

3: LocationManager.
getLastKnowLocation()

4: Msg.setContent()

6: Intent() 7: Intent.putExtra()

2: MainActivity.
onStart()

5: MainActivity.
onPause()

10: TaskService.
onCreate()

14: TaskService.
onStartCommand()

18: PushMessageHandler.
handleMessage()

1: MainActivity()
9: TaskService()

Missing edge in the call
graph used by FlowDroid

Figure 3.1: Essential subgraph of the actual call graph of the motivating example. See a full-page
version of this figure in Figure B.1.

3.2 Background

In this section, we first introduce how existing approaches model the features of the Android
framework, such as callbacks, component lifecycle and inter-component communication. Second,
we explain how FlowDroid uses summaries to analyze library methods with the motivating
example. Lastly, we introduce Averroes [AL13], which inspired our work.

3.2.1 Entry Points and Lifecycle Modeling

FlowDroid models the lifecycle of Android components and creates a dummyMainMethod that
creates objects for each component class such as Activity, Service, BroadcastReceiver, etc.
and calls its lifecycle methods according to the documentation of the Android framework. The
red edges in Figure 3.1 are caused by this model being incomplete. The dummyMainMethod gen-
erated by FlowDroid for the motivating example is depicted in Figure 3.2. It calls a generated
DummyMainClass.dummyMainActivity() method that uses opaque predicates p (predicates that
will not be evaluated statically) to model the control flows in MainActivity’s lifecycle. It also
adds UI callbacks that are defined in the app’s layout XML files to this modeled lifecycle. Al-
though this approach precisely models possible transitions in the Android lifecycle, it often misses
callback methods if the corresponding library class is not in the list AndroidCallbacks.txt used
by FlowDroid.

FlowDroid also patches some commonly used library classes such as java.lang.Thread
and android.os.Handler with mock implementations. This produces fake call-graph edges such
as from Thread.start() to Thread.run. Unfortunately, the list of to be patched methods is also
incomplete, resulting missing edge to the handleMessage method in the motivating example.
This precise modeling of the framework behavior is hard to keep up to date with the development
of the Android framework with its frequent releases. Moreover, this kind of approaches is limited
to the modeled framework and often tailored for one specific analysis tool. In the domain of Java
enterprise applications, popular frmeworks like Java EE, Spring and Apache Struts are rarely
modeled or supported by static analysis frameworks, as pointed by Antoniadis et al. [AFK+20].
We need a framework-independent and reusable approach for generating sound call graphs.

44

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

DummyMainClass.dummyMainActivity():

a.onCreate()

a.onPause()

a.onStart()

MainActivity a = new MainActivity()

P

P

P

return a

Msg.setContent(String str):

DummyMainClass.dummyTaskService():

s.onStartCommand(...)

...
PushMessageHandler.handleMessage
(Message msg):

...

httpclient.execute(httppost)

TaskService.onStartCommand(...):

...

handler.sendMessage(msg)

...

MainActivity.onPause():

...

intent.putExtra("data", this.msg)

startService(intent)

MainActivity.onStart():

Location loc = lm.getLastKnownLocation("network")

this.msg.setContent(loc.toString())

...

dummyMainClass.dummyMainMethod(String...args):

this.c = str

loc

 str

this.c

this.msg.c

this.msg.c

intent.extraValues.c

dummyMainActivity()

dummyTaskService()

a.msg.c

P

P

P
1

4 2

3

5

6

7

...

Source

Sink

Missing Interprocedural path

Interprocedural edge

Intraprocedural edge

Legend:

a.b.c Tainted access path

x Step on the taint path

Missing Interprocedural path

Interprocedural edge

Intraprocedural edge

Legend:

a.b.c Tainted access path

x Step on the taint path

Figure 3.2: FlowDroid’s taint analysis on generated interprocedural CFG for the motivating
example. See a full-page version of this figure in Figure B.2.

3.2.2 Inter-Component Communication

The Android system runs every app in a distinct sandbox and supports multiple ways for apps
and app components to communicate. Intents are message objects one can use to facilitate com-
munications between app components. The data leak in our motivating example uses an intent
to exchange data between the activity and service. As pointed out by Li et al. in their IccTA
paper [LBB+15], malware apps often use this mechanism to bypass analysis tools. FlowDroid
is not able to detect such ICC-leaks. IccTA filled the gap by extracting the ICC links with
the tool IC3 [OLD+15] and connecting the components in the Jimple (see Section 2.4.1) rep-
resentation of the app. Although this approach enables data-flow analysis between different
Android components, it is still tedious and requires manual effort for maintenance. However,
both IccTA and IC3 have not been actively maintained in the past years. For the fakedaum
app of the motivating example, IC3 crashed as we used it to extract the ICC links. Since IccTA
is built on top of FlowDroid, it inherits the limitation of FlowDroid. As the authors also
mentioned in their paper, IccTA only considers the common ICC methods, thus its modeling
of the inter-component communication is also incomplete.

3.2.3 Analysis of Library Methods

Modern software applications, including Android apps, heavily rely on libraries. For a taint
analysis tool to be precise, it must consider the effect of libraries (the Android framework as
well as the third-party libraries) rather than just analyzing the application code. To be scal-
able, FlowDroid doesn’t analyze the library code, but precisely models the taint propagation
through a subset of library APIs. Its EasyTaintWrapper component provides hard-coded mod-
els for the most commonly used APIs from the Java collection classes and the String class. Such
an approach misses less-used APIs and requires large manual effort. Thus, StubDroid was
proposed as an alternative in FlowDroid to handle library APIs [AB16]. StubDroid auto-
matically analyzes library APIs and infers a taint propagation model for each analyzed API. The

45

3.2 Background

1 class A1 extends L1{
2 //This method can be invoked by L2.bar.
3 @Override
4 public void foo(){...}
5 }
6 class A2{
7 public void doSth(){
8 A1 a = new A1();
9 L2 lib = new L2();

10 ///pass an object of A1 to the library.
11 lib.bar(a);
12 }
13 }

(a) Application Code

1 public abstract class L1{
2
3 abstract void foo(){...}
4
5 }
6 public class L2{
7
8 void bar(L1 cls){
9 //cls points to the A1 object created in A2.

10 cls.foo();
11 }
12
13 }

(b) Library Code

Figure 3.3: A case limited by the method calls constraint.

resulting data-flow mappings of the library APIs are stored into summary files. Listing 3.2 shows
the summary of the putExtra method from the android.content.Intent class in XML-format.
These generated summary files can be used later in the taint analysis when corresponding library
APIs are used in the application. For example, at step 7 in Figure 3.2, FlowDroid uses the
summary from Listing 3.2 (line 9-14) and generates a new taint intent.extraValues.c from
the tainted parameter this.msg.c. StubDroid was applied on the Android SDK (version 4.3)
and Oracle Java SDK (version 1.8). Although it generated summaries for most important APIs
in both Android and Java SDK and saves manual work, it still misses some APIs, including the
factory method obtainMessage from the android.os.Handler used in the motivating example
(see line 32 in Listing 3.1).

1<method id="android.content.Intent putExtra(java.lang.String,java.io.Serializable)">
2 <flows>
3 <flow isAlias="false" typeChecking="false">
4 <from sourceSinkType="Parameter" ParameterIndex="0" />
5 <to sourceSinkType="Field"
6 AccessPath="[android.content.Intent: java.lang.String[] extraKeys]"
7 AccessPathTypes="[java.lang.String[]]" /> />
8 </flow>
9 <flow isAlias="false" typeChecking="false">

10 <from sourceSinkType="Parameter" ParameterIndex="1" />
11 <to sourceSinkType="Field" BaseType="android.content.Intent"
12 AccessPath="[android.content.Intent: java.lang.Object[] extraValues]"
13 AccessPathTypes="[java.lang.Object[]]" />
14 </flow>
15 <flow isAlias="true" typeChecking="false">
16 <from sourceSinkType="Field" />
17 <to sourceSinkType="Return" />
18 </flow>
19 </flows>
20</method>

Listing 3.2: Taint summary for Intent.putExtra.

3.2.4 Construction of Application-only Call Graphs with Averroes

Averroes [AL13] is a general approach to construct sound and reasonably precise call graphs for
Java programs that only applies a shallow analysis to the concrete library code: it only examines
the constant pool of each class. Based on collected references from the constant pool, Averroes
builds a class hierarchy of both application and library classes. This class hierarchy is then used
to generate a placeholder library that approximates the possible behaviors of an original library.
An existing whole-program call graph construction framework can use the placeholder library
as replacement of the original library to construct a sound and precise application call graph.

46

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

The placeholder library is generated based on the separate compilation assumption. This
assumption states that all of the library classes are compiled in the absence of the application
classes. As a result, this limits what the library classes can interact with the application classes,
e. g., what kinds of objects the library can hold references to, which methods in the application
code can be called by the library under which circumstance. Eight constraints that followed
from this assumption were introduced with Averroes. The most relevant ones for our work
are the two constraints local variables and method calls. In the following, we explain them by
focusing on how library code can interact with the application code and omit how library code
can interact with itself.

The local variables constraint says that the local variables in the library can point to objects
of application classes that are (1) instantiated by the application and then passed into the
library due to inter-procedural assignments (2) stored in fields accessible by the library code,
(3) or whose runtime type is a subtype of java.lang.Throwable. Based on this constraint
Averroes uses a field called libraryPointsTo to abstract all the local variables in the library.

Themethod calls constraint limits the methods in the application code that can be invoked by
the library: a method that is non-static and overrides method of a library class and the library
holds reference to an object of the method’s declaring class or its subclass. This constraint
basically says that there should be a subtyping relation between the application class and the
library class, as the example in Figure 3.3 shows. In this example, the reference to an object of
an application class is held by the library as it is passed as an argument of a call to the library
method L2.bar. This is the case (1) limited by the local variables constraint.

Based on those constraints from the separate compilation assumption, Averroes generates
a placeholder jar that models what the library could potentially do. Although Averroes
was targeting pure Java applications, the separate compilation assumption is also applicable
for Android applications. We adapted Averroes to analyze Android apps and generate a
placeholder library for the Android framework (i. e., android.jar). Since Averroes only needs
to build a class hierarchy, the android.jar with stub methods distributed in the Android SDK
is sufficient fo this purpose. In the following, we explain with the motivating example how
Averroes works.

The doItAll() method The key concept in Averroes that simulates most of the library
behaviors is the doItAll() method in the Library class generated by Averroes. This method
implements library behaviors such as class instantiation and library callbacks. The library
callbacks part is based on the subtyping relationship between the application classes and the
library classes described in the method calls constraint we introduced above. Listing 3.3 shows
the doItAll() method (line 13-41) for our motivating example generated by Averroes. In line
16-23, the code simulates the behavior that the library can instantiate each concrete library or
application class via reflection. Following the method calls constraint, code in line 24-38 calls all
methods of library classes (classes from android.jar) that are overriden in application classes
(classes from the apk). Averroes also generates code (hidden in line 39) for simulating writing
objects into any array element that is pointed to by the library and exceptions that can be
thrown by the library.

Library Points To The android.jar distributed by Google in the Android SDK contains
only stub methods, which only raise NotImplementedExceptions. The actual implementation
is in devices that run the Android operating system. In this case, the actual library code is usu-
ally not available for call graph construction. Without analyzing the statements in the library
code, a sound call graph construction algorithm should assume that the unanalyzed code could
do anything—creating objects for any type, calling any method, assigning any value to any field,

47

3.2 Background

etc. Yet a call graph constructed based on this conservative assumption is too imprecise. In
fact, the library can only call methods on objects that it has a reference to. In Averroes, the
public field libraryPointsTo is for storing such information in the placeholder library. The field
libraryPointsTo of type java.lang.Object in class AbstractLibrary class is an abstraction
that represents all local variables in the original library code. It points to every object that
could be assigned to a local variable in the library code. Intuitively, the library can hold the
reference of an object due to two cases: (1) the object is created by the library (2) the reference
of the object is passed as an argument for a call to a library method in the application code.

1 public class averroes.Library extends averroes.AbstractLibrary{
2 public static void <clinit>(){
3 averroes.Library r0;
4 averroes.AbstractLibrary $r1;
5 r0 = new averroes.Library;
6 specialinvoke r0.<averroes.Library: void <init>()>();
7 $r1 = <averroes.AbstractLibrary: averroes.AbstractLibrary instance>;
8 $r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo> = r0;
9 <averroes.AbstractLibrary: averroes.AbstractLibrary instance> = r0;

10 return;
11 }
12

13 public void doItAll(){
14 r0 := @this: averroes.Library;
15 r1 = <averroes.AbstractLibrary: averroes.AbstractLibrary instance>;
16 // class instantiation
17 r2 = new example.MainActivity;
18 specialinvoke r1.<example.MainActivity: void <init>()>();
19 r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo> = r2;
20 r3 = new example.TaskService;
21 specialinvoke r3.<example.TaskService: void <init>()>();
22 r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo> = r3;
23 //...
24 // library callbacks
25 r4 = r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo>;
26 r5 = (android.os.Handler) r4;
27 r6 = r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo>;
28 r7 = (android.os.Message) r6;
29 virtualinvoke r5.<android.os.Handler: void handleMessage(android.os.Message)>(r7);
30 r8 = r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo>;
31 r9 = (android.app.Service) r8;
32 virtualinvoke r9.<android.app.Service: void onCreate()>();
33 r10 = r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo>;
34 r11 = (android.app.Service) r10;
35 r12 = r1.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo>;
36 r13= (android.content.Intent) r12;
37 virtualinvoke r11.<android.app.Service: int onStartCommand(android.content.Intent,int,int)>(r13, 1,

1);
38 //...
39 // array element writes and exception handling
40 //...
41 }
42 }

Listing 3.3: The Library.doItAll() method generated by Averroes.

The first case is modeled in the doItAll() method, as shown in line 19 and line 22 in Listing 3.3,
variables holding the references of newly created objects are assigned to libraryPointsTo. The
second case is modeled in the placeholder method Averroes generates for each referenced
library method. Every placeholder method contains parameter assignments that assign param-

48

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

eters to the libraryPointsTo field as shown in line 9 in Listing 3.4 for the library method
Handler.obtainMessage(). Line 11 models the fact that the library also points to the current
object (the this reference) on which the method is called on. Moreover, every library method
can potentially call other methods, create objects, etc. These side effects are modeled by calling
the doItAll() method of class AbstractLibrary as shown in line 12 in Listing 3.4.

1 public final android.os.Message obtainMessage(int, java.lang.Object){
2 averroes.AbstractLibrary r0;
3 android.os.Message r1, r3;
4 android.os.Handler r2;
5 r2 := @this: android.os.Handler;
6 r1 := @parameter0: android.os.Object;
7 r0 = <averroes.AbstractLibrary: averroes.AbstractLibrary instance>;
8 // parameter assignment
9 r0.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo> = r1;

10 // assign the current object
11 r0.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo> = r2;
12 virtualinvoke r0.<averroes.AbstractLibrary: void doItAll()>();
13 r3 = (android.os.Message) r0.<averroes.AbstractLibrary: java.lang.Object libraryPointsTo>;
14 return r3;
15 }

Listing 3.4: The placeholder Jimple method body generated by Averroes for the library method
Handler.obtainMessage.

3.3 Existing Problems with Averroes’s Model

Although the placeholder library generated by Averroes can be used to construct a sound and
precise application-only call graph for normal Java programs, one could not directly use it for
analyzing Android apps or Web apps. We are particularly interested in taint analysis, below we
list the problems that limit applying Averroes directly for a client taint analysis:

Problem 1. Averroes uses a single libraryPointsTo field to represent all objects that
the library holds references to is too imprecise for a field-sensitive taint analysis: once the
libraryPointsTo field is tainted, it could be propagated everywhere and potentially result
in many false positives, since the Library.doItAll() method is called in every placeholder
method.

Problem 2. Framework-based applications often do not have a main method, as the applica-
tion’s flow of control is usually dictated by the framework. One could use the Library.doItAll()
method generated by Averroes as the main entry point. However, Library.doItAll() con-
tains no control flow at all, instead callbacks are invoked in arbitrary order. An inter-procedural
flow-sensitive taint analysis would miss the data leak in the motivating example (see Section 3.1),
if the relevant callbacks are invoked in a wrong order in Library.doItAll().

Problem 3. Repeatedly created objects could lead to false negatives. Figure 3.4 shows an
example explaining this problem. On the left, it shows the placeholder method generated for
the library method Handler.sendMessage. As in the motivating example, the parameter of
Handler.sendMessage is tainted, then the libraryPointsTo field ought to be tainted when a
field-sensitive taint analysis analyzes the placeholder method. This tainted field will be then
propagated into the Library.doItAll() method as it is called in every placeholder method.
On the right side, the libraryPointsTo field needs to stay tainted when it is assigned to

49

3.3 Existing Problems with Averroes’s Model

1 class Handler{
2
3 void sendMessage(Message m){
4 AbstractionLibrary lib = AbstractLibrary.instance;
5 lib.libraryPointTo = this;
6 // taint the libraryPointTo field
7 lib.libraryPointTo = m;
8 lib.doItAll();
9 }

10 }

(a) Placeholder method code.

1 public class Library extends AbstractLibrary{
2 public void doItAll(){
3 // class instantiation ...
4 Message m1 = new Message();
5 Library.libraryPointsTo = m ; // strong update!
6 // library callbacks
7 Message m2 = (Message) Library.libraryPointsTo;
8 handler.handleMessage(m2);
9 }

10 }

(b) Overwritten tainted field.

Figure 3.4: Problem caused by repeatedly created objects (simplified Java code).

a local variable m2 in Library.doItAll() such that m2 is tainted when it is passed to the
call handler.handleMessage (the sink is in this method). However, in Library.doItAll(),
the libraryPointsTo field is overwritten by a newly created Message object. This means the
points-to relationship needs to be removed and the libraryPointsTo field should not be tainted
any more. This is the so called strong update [DD12], a precise taint analysis usually considers
this. As a result, the data leak would be undetected.

Problem 4. Averroes does not consider Java annotations and results in missing edges in the
call graphs. Both Android and Spring frameworks support annotating methods in the applica-
tion code that will be called reflectively by the framework. In Android, one can use annotation
to declare a Java method that can be invoked in JavaScript code. This is the so-called bridge
communication [LDR16]. Listing 3.5 and Listing 3.6 show a simplified example from the bench-
mark app overlaylocker2_android_samp. In Listing 3.5, a class MeSettings is declared with a
method getPhoneNumber() annotated with android.webkit.JavascriptInterface (line 13-
18) 1. At line 8, an instance of MeSettings is injected to the JavaScript environment by
calling the method WebView.addJavascriptInterface. Whenever a web page is loaded on the
WebView object, a new JavaScript object from the injected object will be created by the Android
framework and is accessible with window.MeSettings. Invocation on window.MeSettings in
the JavaScript code will invoke the corresponding method in Java class MeSettings.

1 class MainActivity extends Activity{
2 @Override
3 protected void onCreate(Bundle savedInstanceState) {
4 super.onCreate(savedInstanceState);
5 setContentView(R.layout.activity_main);
6 WebView webView = findViewById(R.id.webView);
7 webView.getSettings().setJavaScriptEnabled(true);
8 webView.addJavascriptInterface(new MeSettings(), "MeSettings");
9 webView.loadUrl("file:///android_asset/webview.html");
10 }
11 }
12

13 class MeSettings {
14 @android.webkit.JavascriptInterface
15 public String getPhoneNumber(){
16 return ((TelephonyManager) this.mContext.getSystemService("phone")).getLine1Number(); // source
17 }
18 }

Listing 3.5: Call Java function in JavaScript code (1).

1For apps targeting SDK version higher than 16, one has to use the method annotation
android.webkit.JavascriptInterface to declare methods that can be invoked by JavaScript code. Before
that, even no annotation was required.

50

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

1<!DOCTYPE html>
2<html>
3<head></head>
4<body>
5 <button onclick="doMalicious()">Try it</button>
6 <script>
7 function doMalicious() {
8 var phoneNumber = window.MeSettings.getPhoneNumber();
9 var xhr = new XMLHttpRequest();

10 xhr.open("POST", "/postman", true);
11 xhr.setRequestHeader('Content−Type', 'application/json');
12 xhr.send(JSON.stringify({phone: phoneNumber})); // sink
13 }
14 </script>
15</body>
16

17</html>

Listing 3.6: Call Java function in JavaScript code (2).

In Spring, annotations are much more common. One can use it to declare entry point methods
(e. g., PostMapping) and even class fields that need to be initiated (e. g., Autowired) by the
framework. We will introduce more details about the Spring framework in Section 3.6.

3.4 The GenCG Approach

In previous section, we discussed why one could not directly use the placeholder library generated
by Averroes for constructing call graphs that can be used by a precise client taint analysis. In
this section, we introduce the improvements we made to address the four problems we pointed
out. We built our GenCG approach on top of Averroes and aimed to support both Android
apps and Web apps using frameworks like Spring. We refer to our modified version of Averroes
with Averroes-GenCG. In this section, we focus on the support for Android apps.

Application
(.apk, .jar)

placeholder.jar

Construct Call Graph with
Library.main()

Library.<clinit>()

as entry points
Library
(.jar)

Averroes-GenCG

Perform
Taint

Analysis

Library.class

instrumented-app

Figure 3.5: Overview of our GenCG approach.

Figure 3.5 shows the overview of our GenCG approach for constructing call graphs for
taint analysis. Given an Android app, Averroes-GenCG first takes both the apk file and the
android.jar file that is shipped with the Android SDK (with stub methods) and generates a
placeholder library for android.jar and Library class. It also generates an instrumented-app
when certain annotations (seeProblem 4 in Section 3.3) are used in the original app. Otherwise,
the instrumented-app is simply the original app. We will introduce this as Improvement 4
in the following subsection.

51

3.4 The GenCG Approach

3.4.1 Main Improvements

1 public class averroes.AbstractLibrary extends
java.lang.Object{

2 public java.lang.Object libraryPointsTo;
3 public static averroes.AbstractLibrary instance;
4 public abstract void doItAll();
5 //default constructor
6 //...
7 }

Listing 3.7: The AbstractLibrary class
generated by Averroes.

1 public class averroes.AbstractLibrary extends
java.lang.Object{

2 public android.os.Handler LPT_1;
3 public android.os.Message LPT_2;
4 public android.app.Service LPT_3;
5 public android.content.Intent LPT_4;
6 public android.app.Activity LPT_5;
7 public android.os.Bundle LPT_6;
8 public java.lang.Thread LPT_7;
9 public java.lang.Runnable LPT_8;

10 //...
11 public static averroes.AbstractLibrary instance;
12 public abstract void doItAll();
13 //default constructor
14 //...
15 }

Listing 3.8: The AbstractLibrary class
generated by Averroes-GenCG.

Improvement 1. To addressProblem 1 in Section 3.3, we introduce typed libraryPointsTo
fields: instead of only using one field (libraryPointsTo in Listing 3.7) for all objects, for each
type of object that library could point to, we create a field of this type in the AbstractLibrary
class. We named such typed fields with names starting with the prefix LPT. Listing 3.8 shows our
version of AbstractLibrary class for the motivating example. This can be unsound if objects
are casted to other types in the application, i. e., a typed LPT field might hold references of other
types of objects. But it is more precise than in the original Averroes, as it does not pollute
objects of other types, once a typed LPT gets tainted. A more fine-grained separation such as
allocation sites is not possible without a deep analysis of both the application and library code,
because allocation sites of objects that library can point to can be either in the application code
or library code. The Android SDK with stub methods would not be sufficient. Technically, it
is also very hard to generate the placeholder library methods, as a method could be called on
different objects and with different arguments. Although our type-based separation might still
introduce false positives, it turns out to work well for detecting real-world taint flows later in
our evaluation.

Improvement 2. To address Problem 2, we introduce control flows into the doItAll()
method as the CFG shown in Figure 3.6 for the motivating example. We do not precisely model
which methods should be called in which order, as it requires to study the framework documen-
tation carefully. Our goal is to add control-flow edges such that every possible call sequence
is covered. This means also unrealizable call sequences, which could potentially introduce false
positives. This is the trade-off for not studying each framework documentation manually. To
achieve our goal, we introduce three kinds of edges with if-statements using a nondeterministic
predicate p (i.e. if(Math.random()<0.5)): skip-method edges (in blue), skip-class edges (in
red) and loop edges (in green). In reality, not every callback method is called every time when a
library method is called as the placeholder method does, the skip-method edges allow cases that
a callback method is not called. Similarly, all calls to methods of a class can be skipped by the
skip-class edges. To simulate the effect that a method can be called multiple times in the library,
we introduced the loop edges. The combination of skip-method edges and loop edges ensures
that all possible orders of method calls are captured, including the lifecycle of Android compo-
nent classes. For instance, in the part where service is simulated in Figure 3.6, although the
onStartCommand() appears first in the control-flow graph, the path A-B-F-G-H-J-A-D-E-F-C
represents the execution path in which onCreate() is called before onStartCommand() as defined
in the service’s lifecycle.

52

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Library.doItAll():

 AbstractLibrary ins= AbstractLibrary.instance

Handler handler = ins.LPT_1

Message m = ins.LPT_2

handler.handleMessage(m)

P

P

P

s = ins.LPT_3

P

s.onStartCommand(i, 1, 1)

P

s.onCreate()

P

...

P

Service s = ins.LPT_3;
Intent i=ins.LPT_4;

P

P

return

P

Activity a = ins.LPT_5

Legend: Skip-method edge Skip-class edge Loop edge

D

E

F

A

B

C
G

H

JSimulate
Service

Simulate
Activity

Figure 3.6: The CFG of Library.doItAll() by our Averroes-GenCG. The corresponding
code is in Listing 3.9.

Improvement 3. To address Problem 3, we move the class instantiation part in doItAll()
to a separate main() method in the Library class (see Listing 3.9) to avoid unnecessary strong
updates . The main() method will be taken by popular analysis frameworks by default as entry
point and is only called once. Based on our experience with Android, most objects are only
created once by the framework.

53

3.4 The GenCG Approach

1 public class Library{
2 public static void main(String[] args){
3 AbstractLibrary r = AbstractLibrary.instance;
4 Activity a1 = new MainActivity();
5 r.LPT_5 = a1;
6 Service s1 = new TaskService();
7 r.LPT_3= s1;
8 Thread t1 = new LooperThread();
9 r.LPT_7 = t1;

10 r.LPT_8 = t1;
11 Handler h1 = new PushMessageHandler();
12 r.LPT_1 = h1;
13 }
14

15 public static Library(){
16 Library lib = new Library();
17 AbstractLibrary.instance = lib;
18 }
19

20 public void doItAll(){
21 AbstractLibrary ins = AbstractLibrary.instance;
22 do{
23 if(p){
24 Handler handler = ins.LPT_1;
25 Message m = ins.LPT_2;
26 if(p){
27 handler.handleMessage(m);
28 }
29 }
30 if(p){
31 do{
32 Service s = ins.LPT_3;
33 Intent i = ins.LPT_4;
34 if(p){
35 s.onStartCommand(i, 1, 1);
36 }
37 s = ins.LPT_3;
38 if(p){
39 s.onCreate();
40 }
41 } while(p);
42 }
43 if(p){
44 do{
45 Activity a = ins.LPT_5;
46 Bundle b = ins.LPT_6;
47 if(p){
48 a.onCreate(b);
49 }
50 a = ins.LPT_5;
51 if(p){
52 a.onStart();
53 }
54 a = ins.LPT_5;
55 if(p){
56 a.Pause();
57 }
58 } while(p);
59 }
60 } while(p);
61 } }

Listing 3.9: The Library class (simplified code) generated by Averroes-GenCG.
54

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Improvement 4. To address Problem 4, our Averroes-GenCG handles class, method and
field annotations that are supported by the framework. These annotations (annotation class
signatures) are stored in configuration lists used by Averroes-GenCG and can be extended
easily. For annotated methods and classes, Averroes-GenCG creates artificial interfaces and
instruments annotated classes to be subtypes of these interfaces. These artificial interfaces
declare annotated methods and can be seen as a replacement for the annotations. This way
it reduces the problem to the resolution of subtyping relationship that can be handled by the
original Averroes. Averroes-GenCG will generate invocations of those annotated methods in
the library callbacks part of the doItAll() method. For field annotations, Averroes-GenCG
also handles some common concepts. We will introduce the details about this in Section 3.6
when introducing the application of our approach on the Spring framework, in which annotations
are heavily used.

In addition to these four main improvements, we remove the array elements writes and
exception handling parts from the doItAll(). Our version of doItAll() only keeps the library
callbacks part. This is unsound, however, we made this choice to avoid false positives caused by
the assignments using the libraryPointsTo fields in the array elements writes and exception
handling.

3.4.2 Sound and Precise Call Graph

Next, we explain how our Averroes-GenCG allows call graph construction algorithms to
produce sound and precise call graphs at least as good as Averroes does. We focus on providing
the intuition how the generated code is handled by the call graph algorithms in Soot.

The biggest challenge to construct call graphs for object-oriented programs is dynamic dis-
patch: deciding the runtime type of the receiver of a polymorphic call. A conservative call
graph algorithm Class Hierarchy Analysis (CHA) assumes that the receiver could be an object
of any subclass of the declared type. Because call graphs constructed with CHA are too im-
precise, other call graph algorithms attempt to improve the estimation of the runtime types
of receivers. Rapid Type Analysis (RTA) considers object allocation sites and limits the type
of a receiver to be only the types of object that have been instantiated in the program. For
those two algorithms, there should be no difference in the call graphs using the code generated
by our Averroes-GenCG or the original Averroes. More precise call graph construction
algorithms compute the points-to sets that each variable could point to, which were Averroes
designed for. Variable Type Analysis (VTA) and Declared Type Analysis (DTA) refine call

Table 3.1: The four types of edges in Spark’s pointer assignment graph (Table 1 in [LH03]).

Statement Notation Edge Inference Rule

Allocation x = new C new C → x
newx → x

newi ∈ pt(x)

Assignment x = y y → x
newy ∈ pt(y), y → x

newy ∈ pt(x)

Field Store x.f = y y → x.f
newy ∈ pt(y), newx ∈ pt(x)

newy ∈ pt(newx.f)

Field Load x = y.f y.f → x
newy ∈ pt(y), newx ∈ pt(newy.f)

newx ∈ pt(x)

55

3.4 The GenCG Approach

graphs by taking assignments into account. They consider only types that can possibly reach
the call site. However, since these two approaches are only field-based, some imprecisions still
remain. The most precise algorithm in Soot is Spark, which constructs call graphs on-the-fly
as the points-to sets of call site receivers are computed. In the following, we demonstrate with
the motivating example how the placeholder library generated by Averroes-GenCG allows
constructing sound and precise call graphs using Spark.

Spark consists of two steps: (1) build pointer assignment graph (PAG) for the program,
(2) propagate the points-to sets along edges in PAG until a fixed point is reached. The pointer
assignment graph is used in Spark to represent the subset-based points-to information of the
program. The PAG contains three types of nodes: allocation nodes, variable nodes and field
reference node. Allocation nodes represent allocation sites in the program where new objects
are created. Variable nodes represent local variables, method parameters, return values and

doItAll()main(String[] args)

L17: new Library

L5: new MainActivity

L12: new PushMessageHandler

a1

r

r.LPT_5

r.LPT_3

r.LPT_1

lib

AbstractLibrary.
instance

L7: new TaskService

s1

h1

ins

L9: new LooperThread

r.LPT_7 r.LPT_8

t1

ins.LPT_5

a

ins.LPT_6

b

Points-to information
computed in propagation

 Allocation node

 Field reference node

 Variable node

Legend:

Subset-based points-to
information

C1

C2

C3

ins.LPT_1

handler

ins.LPT_2

m

ins.LPT_1

handler

ins.LPT_2

m

ins.LPT_3

s

ins.LPT_4

i

ins.LPT_3

s

ins.LPT_4

i
C4

C5

C6 C9

C7

C8

C10

C11

Figure 3.7: Pointer assignment graph for the Library class.

56

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

static fields. Field reference nodes represent field access expressions. The nodes in PAG are
connected by four types of edges based on the rules listed in Table 3.1. The propagation
of points-to sets is also based on these rules. An edge y → x in PAG models subset-based
points-to constraint pt(y) ⊆ pt(x), where pt(y) and pt(x) denote the points-to sets for y and x
respectively. The PAG for the Library class generated by Averroes-GenCG in Listing 3.9
is illustrated in Figure 3.7. We use solid edges to represent the edges in the initial PAG.
This PAG contains 11 connected components C1, ..., C11. The connect component C1 on
the left, starting from the allocation node for a Library object, is constructed based on the
assignments at line 17-18, line 4 and line 22 in Listing 3.9. As we can see, variable node r
from the method main() and node ins from the method doItAll() are both connected to the
variable node AbstractLibrary.instance, which is a static field of the AbstractLibrary class.
The propagation of points-sets in Spark starts from allocation nodes. It is not hard to see that
in the propagation, the allocation site L17 will be added to the points-to set of each node in
C1, especially pt(r) = pt(ins) = {L17}. Similarly, we will have pt(a1) = pt(r.LTP_5) = {L5}
in C2 shown in the middle of the figure. Because pt(r) = pt(ins) = {L17} and pt(r.LTP_5) =
{L5}, the propagation will compute pt(L17.LTP_5) = {L5}. From L17 ∈ pt(ins), we will
get pt(ins.LTP_5) = pt(L17.LTP_5) = {L5}. Points-to information computed this way are
displayed as dashed edges in the figure. Due to the edge ins.LTP_5 → a in C6, eventually L5
will be propagated from pt(ins.LTP_5) to pt(a). The call graph is constructed based on the
computed points-to sets. We know now that pt(a) = {L5} in the doItAll() method, then the
targets of the calls a.onCreate(), a.onStart() and a.Pause() in line 49, 53 and 57 have to be
in the MainActivity class, since L5 stands for the allocation site of the MainActivity object
created in the main() method. Because the typed LPT fields in the AbstractLibrary class are
only assigned with either objects created in the Library.main() methods or objects from the
application code that are passed as arguments of library calls (see Listing 3.4), there will only
be edges from doItAll() to methods in the classes of those objects in the call graph.

The call graph for the motivating example using our placeholder library constructed by
Spark is shown in Figure 3.8. For simplicity, we only show the outgoing edges from methods of
the Library class. The calling behavior of Android is simulated by the methods Library.main()
and Library.doItAll(). In comparison to the actual call graph in Figure 3.1, we can see that
for every outgoing edge starting from the Android node in Figure 3.1 to a node X, there is
an outgoing edge starting from either Library.main() or Library.doItAll() to X in the call
graph using our approach.

Simulate Android Library.doItAll()

MainActivity.
onStart()

MainActivity.
onPause()

TaskService.
onCreate()

 TaskService.
onStartCommand()

PushMessageHandler.
handleMessage()

MainActivity()

 TaskService()

Library.main()

MainActivity.
onCreate()

 LoopThread()

PushMessageHandler()

Figure 3.8: Call graph constructed with our GenCG approach.

57

3.4 The GenCG Approach

3.4.3 Supporting Detection of ICC Leaks

Another benefit to use our approach is supporting detection of ICC leaks. In the following, we
explain how the generated placeholder library by Averroes-GenCG allows a field- and flow-
sensitive taint analysis like FlowDroid to detect ICC leaks using Intent to exchange sensitive
data between different Android components.

To scale, FlowDroid does not analyze methods from the Android framework nor the JDK.
Instead, it uses data-flow summaries of these library methods to model the taint propagation
over the library call sites. This has been proven to significantly improve the performance of
FlowDroid [AB16]. However, such approach is only sound whenever the set of summaries is
complete, which is not the case in FlowDroid. For example, there is no summary for library
method ContextWrapper.startService that passes data to the Android framework which is
then passed to the receiver method of the target component as a parameter by the Android
framework. Because FlowDroid’s DummyMainMethod simulates the lifecycle of each component
to be independent from each other, it does not support passing data between different Android
components.

In contrast, our Library.doItAll() method combined with the placeholder library methods
enables intent data to flow from one component to any other component. Consider the moti-
vating example, Figure 3.9 shows how an intent created in one component (MainActivicty) is
passed to another intent used in a second component (TaskService). The key is the field store to
ins.LTP_4 in the placeholder method and field load from ins.LTP_4 in the Library.doItAll()
method (highlighted in yellow). ins.LTP_4 is the typed LPT field for Intent generated by our
Averroes-GenCG. It is obvious to see in the figure, that the intents used in both components
are aliased to ins.LTP_4. If the intent in MainActivity is tainted, a field- and flow-sensitive
taint analysis like FlowDroid should also taint ins.LTP_4 and the intent in TaskService
when performing the analysis.

MainActivity

startService(intent)

Library.doItAll()

TaskService

onStartCommand(intent,1,1)

i = ins.LTP_4

intent

placeholder method for
Context.startService(Intent intent)

ins.LTP_4 = intent

...

ins.LTP_4

intent

...

ins.doItAll()

onStartCommand(i,1,1)

Figure 3.9: How an intent is passed between two components of the motivating example.

We adapted FlowDroid’s taint analysis to use the call graph generated by our approach
and refer to this client FlowDroidGen. FlowDroidGen takes existing summaries as Flow-
Droid does, but also analyzes placeholder library methods from the Android SDK, of which

58

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Library.doItAll():

Msg.setContent(String str):

MainActivity.onStart():

Location loc = lm.getLastKnownLocation("network")

this.msg.setContent(loc.toString())

...

this.c = str

loc
 str

this.c
this.msg.c

1

4

2

3

a.onStart()

...

...

a.onPause()

a.msg.c5

MainActivity.onPause():

...

intent.putExtra("data", this.msg)

startService(intent)

this.msg.c

intent.extraValues.c

7

8

a.msg.c6

Library.doItAll():

Msg.setContent(String str):

MainActivity.onStart():

Location loc = lm.getLastKnownLocation("network")

this.msg.setContent(loc.toString())

...

this.c = str

loc
 str

this.c
this.msg.c

1

4

2

3

a.onStart()

...

...

a.onPause()

a.msg.c5

MainActivity.onPause():

...

intent.putExtra("data", this.msg)

startService(intent)

this.msg.c

intent.extraValues.c

7

8

a.msg.c6

ContextWrapper.startService
(Intent intent):

placeholder methods

Figure 3.10: Taint propagation in MainActivity.

ContextWrapper.startService(Intent intent):

MainActivity.onPause():

...

startService(intent)

intent.extraValues.c

AbstractLibrary ins = AbstractLibrary.instance

ins.LTP_4 = intent

ins.LTP_20 = this

ins.doItAll()

return ins.LPT_23

 intent.extraValues.c

ins.LTP_4.extraValues.c

ins.LTP_4.extraValues.c

2

3

1
4

Library.doItAll():

s.onStartCommand(i, 1, 1)

i = ins.LPT_4

...
5

i.extraValues.c

ins.LTP_4.extraValues.c

6
P

...

7 i.extraValues.c

placeholder methods

TaskService.onStartCommand
(Intent intent, int flags, int startId)

Figure 3.11: Taint propagation from MainActivity to TaskService.

no summaries are available. In the following, we explain how FlowDroidGen can detect
the ICC leak in the motivating example. Consider the step 8 in Figure 3.10 at the state-
ment intent.putExtra("data", this.msg): because there exists a summary for this method
and a taint this.msg.c, FlowDroid generates a new taint intent.extraValues.c. Since
there is no summary for library method ContextWrapper.startService, FlowDroidGen an-
alyzes the placehoder method for ContextWrapper.startService. This enables the taint
intent.extraValues.c to be propagated into the placeholder method as Figure 3.11 shows.

In the placeholder method of ContextWrapper.startService, the parameter is assigned
to its corresponding typed LPT_4 field. When evaluating this assignment, FlowDroidGen

will generate a new taint ins.LTP_4.extraValues.c. Because this taint is on the same ob-
ject as the receiver of the call site ins.doItAll(), this taint will be propagated into the
Library.doItAll() method (see from step 4 to 5 in Figure 3.11). In Library.doItAll(),
every argument passed to the invocation of a callback method is loaded from its corresponding
typed LPT*, e. g., i=ins.LPT_4 for the argument i of s.onStartCommand(i,1,1. A new taint
i.extraValues.c is generated and will be propagated to the callee TaskService.onStartCommand.
As we have seen in this example, analyzing the placeholder method and Library.doItAll()
allows data passing between different Android component objects. Similarly, as Figure 3.12
shows, the tainted data will be propagated from the method TaskService.onStartCommand to
PushMessageHandler.handleMessage and eventually reaches the sink. Note that there exists no
summary in FlowDroid for Handler.obtainMessage. The original Handler.obtainMessage

59

3.4 The GenCG Approach

method takes an object as parameter and assigns it to the returned Message.obj field. Our
Averroes-GenCG considers such cases and generates placeholder methods that model such
setter behavior as Listing 3.10 shows.

TaskService.onStartCommand
(Intent intent, int flags, int startId)

Handler.obtainMessage(int i, Object o)

placeholder methods

Library.doItAll()
msg.obj.c PushMessageHandler.

handleMessage(Message msg)

o.c ins.LTP_2.obj.c

Figure 3.12: Taint propagation from TaskService to PushMessageHandler.

1 public final android.os.Message obtainMessage(int, java.lang.Object){
2 java.lang.Object r0;
3 android.os.Handler r1;
4 android.os.Message $r2, $r3;
5 int i0;
6 averroes.AbstractLibrary r4;
7 r1 := @this: android.os.Handler;
8 i0 := @parameter0: int;
9 r0 := @parameter1: java.lang.Object;

10 r4 = <averroes.AbstractLibrary: averroes.AbstractLibrary instance>;
11 r4.<averroes.AbstractLibrary: java.lang.Object LPT_19> = r0;
12 r4.<averroes.AbstractLibrary: android.os.Handler LPT_2> = r1;
13 $r2 = r4.<averroes.AbstractLibrary: android.os.Message LPT_3>;
14 $r2.<android.os.Message: java.lang.Object obj> = r0; // assign the second parameter to Message.obj.
15 r4.<averroes.AbstractLibrary: android.os.Message LPT_3> = $r2;
16 virtualinvoke r4.<averroes.AbstractLibrary: void doItAll()>();
17 $r3 = r4.<averroes.AbstractLibrary: android.os.Message LPT_3>;
18 return $r3;
19 }

Listing 3.10: Placeholder method for Handler.obtainMessage

Although using our placeholder library for Android SDK supports detection of ICC leaks, it
is not perfect. Because all intents are pointed by one typed LPT field and the placeholder library
does not differentiate the source and the target components, it may produce false positives
sometimes as we later show in our evaluation.

60

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

3.5 Evaluation of GenCG

We evaluate GenCG with FlowDroidGen, which is FlowDroid using our call graphs. Our
experiments are designed to address the following research questions:

RQ1. How completely do the call graphs of FlowDroidGen capture the code of known taint
flows in TaintBench, compared to FlowDroid?

RQ2. How effective is FlowDroidGen in decting taint flows in both DroidBench and Taint-
Bench compared to FlowDroid?

RQ1. How completely do the call graphs of FlowDroidGen capture the code
of known taint flows in TaintBench, compared to FlowDroid?

To answer this question, we executed both FlowDroid and FlowDroidGen to analyze Taint-
Bench apps and dumped the static call graphs constructed with Spark used by the taint analysis
as we did in Section 2.5.3.2. We compared all relevant methods specified for the expected taint
flows in TaintBench against callees in the serialized call graphs. If a specified method of an
expected taint flow is missing in the call graph used by a tool, this flow won’t be detected by
the tool. In this chapter we focus on these false negatives that are caused by an incomplete
call graph. Note that even with a complete call graph, if the analysis is unsound, it can still
cause the flow to be undetected. Such cases need to be studied individually, which are not our
target in this chapter. Table 3.2 shows our comparison of two different false negatives caused by
incomplete call graphs. Type-1 and Type-2 false negatives were introduced in Section 2.5.3.2 in
last chapter. While FlowDroid did not construct call graphs for 6 apps, resulting 28 Type-1
false negatives, FlowDroidGen constructed call graphs that capture all of these 28 flows. Also,
using our approach the number of Type-2 false negatives is significantly reduced from 42 to 19.
In total, 51 more expected taint flows are captured in the call graphs of our approach in com-
parison to FlowDroid, which is 25% (51/203) of all expected flows. We further investigated
what kinds of edges remain missing in call graphs using our approach. There are two main kinds
of missing edges:

• Calls from third-party library (not Android) to callback methods, e.g., fakeplay, hummingbad.
This kind of edges could be constructed if we were to apply Averroes-GenCG to the
corresponding third-party libraries.

• UI callbacks that are defined in layout files, e.g., repane. These kind of edges require
parsing the layout XML files and finding UI callbacks defined in them. Since such XML
configuration is different in every framework and our approach is designed to be general,
we did not model this specifically for Android. This could be done, of course, though,
with appropriate engineering effort. For instance, one could integrate dynamic tools such
as TamiFlex [BSS+11] that records the actual uses of reflection that occur at runtime.
Averroes can generate the corresponding behavior in the Library.doItAll() method.
This ability is inherited by Averroes-GenCG.

Another reason for false negatives is the Problem 4 discussed in Section 3.3: taint flows
cross both Java and JavaScript code via WebView supported by the Android framework. As
we introduced in Improvement 4 in Section 3.4.1, Averroes-GenCG supports detecting
of methods with the android.webkit.JavascriptInterface annotation and generates invo-
cations of those annotated methods in the doItAll() method. Nevertheless, to detect these
taint flows, the analysis still needs to track the data flow in the JavaScript code, which is not
supported by FlowDroid.

61

3.5 Evaluation of GenCG

RQ2. How effective is FlowDroidGen in decting taint flows in both Droid-
Bench and TaintBench compared to FlowDroid?

Experiment Setup We evaluated FlowDroidGen on both DroidBench and TaintBench
to see how effective it is in comparison to FlowDroid. For each benchmark app in both suites,
the sources and sinks were configured at app-level (i.e., sources and sinks defined in the bench-
mark cases of the app) as in Experiment 3 introduced in Section 2.5.1.2. The experiment was
executed on a windows laptop with an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz processor,
16GB RAM and Java 8 (Oracle 1.8.0_202) installed.

Evaluation on DroidBench: The evaluation results on DroidBench are shown in Table 3.3.
In this table, for each category, numbers of FlowDroidGen that are better than FlowDroid
are marked with a , while worse ones with a . In four categories, i.e., Android Specific, Inter
Component Communication, Lifecycle, Reflection ICC, FlowDroidGen detected more true-
positive data leaks than FlowDroid. The maximal increase of true positives is in the category
Inter Component Communication with 9 (row 10: 13 - 4) more true positives. However, because

Table 3.2: Comparison of false negatives caused by incomplete call graphs: Type-1 false negatives
are those flows where no call graph could be constructed for the respective apk at all. Type-2
false negatives are those flows of which relevant methods are missing in the call graph.

(a) Type-1 False Negatives

Benchmark App FlowDroid FlowDroidGen

chulia 4 0
fakeappstore 3 0
fakemart 2 0
godwon_samp 6 0
samsapo 4 0
slocker_android_samp 5 0
sms_google 4 0
Σ 28 0

(b) Type-2 False Negatives

Benchmark App FlowDroid FlowDroidGen

chat_hook 1 0
fakedaum 1 0
fakeplay 2 2
hummingbad_android_samp 2 2
overlaylocker2_android_samp 6 6
remote_control_smack 17 1
repane 1 1
save_me 1 1
scipiex 2 0
smsstealer_kysn_assassincreed_android_samp 2 0
the_interview_movieshow 1 0
vibleaker_android_samp 4 4
xbot_android_samp 2 2
Σ 42 19

62

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Table 3.3: Comparison of the evaluation results on DroidBench. See detailed result of each
benchmark app in Table B.1.

FlowDroid FlowDroidGen

No. Category TP FP FN TP FP FN
1 Aliasing 0 2 0 0 3 0
2 Android Specific 6 0 5 7 1 4
3 Arrays and Lists 4 5 0 4 4 0
4 Callbacks 12 2 2 4 1 10
5 Dynamic Loading 3 0 0 3 0 0
6 Emulator Detection 14 0 1 12 0 3
7 Field and Object Sensitivity 2 0 0 2 0 0
8 General Java 11 4 10 11 3 10
9 Implicit Flows 1 0 0 1 0 0
10 Inter Component Communication 4 0 15 13 7 6
11 Lifecycle 15 0 9 20 0 4
12 Native 4 0 1 4 0 1
13 Reflection 1 0 8 1 0 8
14 Reflection ICC 1 0 10 3 1 8
15 Self Modification 0 0 3 0 0 3
16 Threading 5 0 1 5 0 1
17 Unreachable Code 1 0 2 1 0 2
∑ 84 13 67 91 20 60
Precision 0.87 0.82
Recall 0.56 0.60
F-measure 0.68 0.69

TP: True Positive, FP: False Positive, FN: False Negative
: better result, : worse result

we did not model the XML-based UI callbacks in Averroes-GenCG to stay general for Java
frameworks as we mentioned previously in RQ1, the result of FlowDroidGen in the Callbacks
category is worse than FlowDroid with 8 less true positives (8 more false negatives), as many
of the callbacks in these apps are specified in the app’s layout XML files. In the category Em-
ulator Detection, one of the two new false negative of FlowDroidGen (app: PI1) was also due
to this reason. The other false negative was in the app PlayStore2, since Averroes-GenCG
could not generate the Library class. The ASM backend threw a MethodTooLargeException
when generating bytecode for the Library class. It turns out that this app PlayStore2 contains
library classes from the Google Play Service (com.google.android.gms.*) [Goo12], which are
considered as application code by Averroes-GenCG and it creates objects for these classes
in Library.main(). This raises another interesting research question: how can one separate
library code and application code inside an Apk file? Checking the prefix of common library
packages as FlowDroid is not an optimal option, as malware apps often leverage this as we
have discussed in Section 2.5.3.2. Nevertheless, FlowDroidGen still detected 7 (row ∑: 91 - 84)
more true positives in total, resulting a better recall (0.60 vs. 0.56). Because we did not model
the lifecycle of Android components as precisely as FlowDroid did and only used typed LPT
fields to abstract objects of the same type pointed by the Android framework, more false posi-

63

3.5 Evaluation of GenCG

tives were expected as we explained in Improvement 1 and Improvement 2 in Section 3.4.1.
There are 6 (row sum: 19 - 13) more false positives produced by FlowDroidGen in comparison
to FlowDroid. Listing 3.11 shows such a false-positive case detected by FlowDroidGen. In
this example, the field this.b.b is not yet tainted as it is used in the sink at line 10. It is
only aliased to a.b at line 11. Assume AbstractLibrary.LPT_1 is the typed LPT field gen-
erated by Averroes-GenCG for the class Activity. This field points to an object of the
MainActivity class initialized in the Library.main() method. The field access this.b.b at
line 10 is equal to the taint with access path AbstractLibrary.instance.LPT_1.b.b gener-
ated in the taint analysis when evaluating line 11. This taint will be propagated again to the
onCreate() method through the loop edge for the Activity class in the Library.doItAll()
method (see example of loop edges in Figure 3.6). Note that the loop edges simulate the effect
that a method can be called multiple times by the framework. Therefore, the second time the
method aliasFlowTest() is analyzed, the field this.b.b is tainted and a false-positive will be
reported. Other new false positives arise in benchmark apps using inter component communica-
tions. Although, our approach allows detecting of ICC leaks as we introduced in Section 3.4.3,
it does not differentiate the destinations of intents as we mentioned in Section 3.4.3. Those false
positives involve unrelated Android components that never receive a tainted intent. Despite
the slightly decreased precision, our approach still allows FlowDroidGen to achieve better F-
measure on DroidBench (0.68 vs 0.66). In conclusion, FlowDroidGen is at least as effective
as FlowDroid on DroidBench.

1 class MainActivity extends Activity{
2 public void onCreate(Bundle savedInstanceState) {
3 //...
4 aliasFlowTest();
5 }
6 private void aliasFlowTest() {
7 String deviceId = ((TelephonyManager) getSystemService("phone")).getDeviceId(); // source
8 A a = new A();
9 a.b = deviceId;

10 SmsManager.getDefault().sendTextMessage("+49 1234", null, this.b.b, null, null); // sink, no leak
11 this.b = a;
12 }
13 }

Listing 3.11: False positive reported by FlowDroidGen for the app FlowSensitivity1 from the
aliasing category.

64

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Evaluation on TaintBench: Table 3.4 shows the comparison between FlowDroid and
FlowDroidGen evaluated on TaintBench. As we can see in this table, FlowDroidGen

detected 24 (row sum: 64-40) more true positives with just one more false positives (row
sum: 9-8) than FlowDroid. The call graphs constructed with our GenCG approach en-
abled FlowDroidGen to analyze more code than FlowDroid, thus, improved the recall from
0.20 to 0.32. Although a generic approximation like our approach can be noisy, the evaluation
results show that it did not affect in detecting real-world malicious taint flows in TaintBench.
Even the precision is slightly increased from 0.83 to 0.88.

As we mentioned in Section 3.5, the call graphs used by FlowDroidGen contain relevant
edges for 50 more expected taint flows. However, still about half (26) of these flows could be not
detected in the taint analysis. One major reason is still unmodeled library behaviors. Listing 3.12
shows a false-negative case from the benchmark app chulia. The method Cursor.getString()
invoked at line 11 and line 12 returns sensitive data stored in a database for SMS messages.
This behavior is not modeled as a data-flow summary nor captured by the placeholder method
body generated by Averroes-GenCG, as Averroes-GenCG does not model databases or
any intermediate file storage. Such cases are also hard to model statically, dynamic analysis
would be more effective [RAMB16]. As a result, no new taints will be generated from the taint
query that is tainted.

1 String getSms() {
2 StringBuilder stringBuilder = new StringBuilder();
3 Cursor query = getContentResolver().query(Uri.parse("content://sms/"),
4 new String[]{"_id", "address", "person", "body", "date", "type"},
5 null, null, "date desc"); // source, query is tainted.
6 if (query.moveToFirst()) {
7 int index1 = query.getColumnIndex("person");
8 int index2 = query.getColumnIndex("address");
9 do {

10 String person = query.getString(index1); // not tainted
11 String address = query.getString(index2); // not tainted
12 stringBuilder.append("person:");
13 stringBuilder.append(string + ",address:");
14 stringBuilder.append(string2);
15 stringBuilder.append(";");
16 } while (query.moveToNext());
17 } else { stringBuilder.append("no result!");}
18 return stringBuilder.toString();
19 }
20 void onReceive(){
21 leak(getSms()); // sink
22 }

Listing 3.12: A simplified false-negative case from the app chulia in TaintBench.

Thus, the return value of the method getSms() that is passed to the sink is not tainted in
the analysis and no leak is reported. Also some malware apps in TaintBench obfuscate with
string encryption in combination with reflective method calls, this makes it very difficult for
static analyses approaches to understand the purpose of the malicious code. Such cases (e.g. in
app fakemart) are not handled by the taint analysis of FlowDroid.

65

3.5 Evaluation of GenCG

Table 3.4: Comparison of the evaluation results on TaintBench. See detailed result of each
benchmark app in Table B.2.

FlowDroid FlowDroidGen

No. Benchmark App TP FP FN TP FP FN
1 backflash 11 4 2 11 4 2
2 beita* 0 0 3 1 0 2
3 cajino_baidu 8 1 4 8 1 4
4 chat_hook 8 0 4 7 0 5
5 chulia 0 0 4 0 0 4
6 death_ring* 1 0 0 1 0 0
7 dsencrypt* 0 0 1 0 0 1
8 exprespam 0 0 2 1 0 1
9 fakeappstore 0 0 3 1 0 2
10 fakebank* 0 0 5 2 0 3
11 fakedaum 0 0 2 1 0 1
12 fakemart 0 0 2 0 0 2
13 fakeplay 0 0 2 0 0 2
14 faketaobao 0 0 4 3 0 1
15 godwon_samp 0 0 6 4 0 2
16 hummingbad* 0 0 2 0 0 2
17 jollyserv 0 0 1 0 0 1
18 overlay* 0 2 4 1 0 3
19 overlaylocker2* 0 0 7 0 1 7
20 phospy 1 1 1 2 2 0
21 proxy_samp 2 0 15 2 0 15
22 remote* 0 0 17 8 0 9
23 repane 0 0 1 0 0 1
24 roidsec 0 0 6 0 0 6
25 samsapo 0 0 4 0 1 4
26 save_me 2 0 23 2 0 23
27 scipiex 0 0 3 1 0 2
28 slocker* 0 0 5 1 0 4
29 sms_google 0 0 4 1 0 3
30 sms_send_locker* 0 0 6 0 0 6
31 smssend* 4 0 1 2 0 3
32 smssilience* 0 0 2 0 0 2
33 smsstealer* 1 0 4 1 0 4
34 stels_flashplayer* 2 0 1 2 0 1
35 tetus 0 0 2 1 0 1
36 the_interview* 0 0 1 0 0 1
37 threatjapan* 0 0 2 0 0 2
38 vibleaker* 0 0 4 0 0 4
39 xbot* 0 0 3 0 0 3
∑ 40 8 163 64 9 139
Precision 0.83 0.88
Recall 0.20 0.32
F-measure 0.32 0.47

TP: True Positive, FP: False Positive, FN: False Negative
: better result, : worse result, *: the prefix of the app name.

66

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

3.6 Application of GenCG on the Spring Framework

In this section, we demonstrate how one can apply GenCG to the Spring Framework. We
focus on explaining how common Spring features are handled by Averroes-GenCG. Spring
is the most popular Java web framework in recent years [Gee20]. It implements the Inversion
of Control (IoC) principle, which is also known as dependency injection [Spr02a]. Dependency
injection is a technique such that objects define their dependencies through constructor argu-
ments, factory methods arguments or setter arguments. The IoC container in Spring is there
to inject dependency objects. In Spring, the objects that are created and managed by its IoC
container are called beans. Beans can be defined both via XML configuration, or in Java though
annotations and code. The creation of beans or and invocation of their member methods in
Spring rely heavily on reflection. This is one of the biggest reasons why popular static analysis
frameworks such as Soot or WALA fail to produce sound call graphs for Spring applications.

3.6.1 Handling Annotated Entry Points

The core part of Spring is designed as a model-view-controller framework that utilizes a class
DispatcherServlet to dispatch HTTP requests to handlers [Spr02b]. A handler is defined by
both a class annotation (e. g., @RestController) and a method annotation (e. g., @PostMapping)
in Spring. Listing 3.13 shows a piece of code from WebGoat [Web14] defining a handler that is
vulnerable to SQL injections. In this example, the class SqlInjectionLesson2 is annotated with
@RestController and its member method completed() is annotated with @PostMapping. Just
like in Android apps, objects of this class (or beans) are not created anywhere in the application
code, but at runtime by the framework, so does the handler method completed() for handling
POST requests. Without modeling the Spring framework, the method completed() will not
appear in call graphs constructed by Soot or WALA.

1@RestController
2 public class SqlInjectionLesson2 extends AssignmentEndpoint {
3

4 private final LessonDataSource dataSource;
5

6 public SqlInjectionLesson2(LessonDataSource dataSource) {
7 this.dataSource = dataSource;
8 }
9

10 @PostMapping("/SqlInjection/attack2")
11 @ResponseBody
12 public AttackResult completed(@RequestParam String query) {// source: parameter query
13 return injectableQuery(query);
14 }
15

16 protected AttackResult injectableQuery(String query) {
17 try (var connection = dataSource.getConnection()) {
18 Statement statement = connection.createStatement(TYPE_SCROLL_INSENSITIVE,

CONCUR_READ_ONLY);
19 ResultSet results = statement.executeQuery(query); // sink: execute the untrusted SQL query
20 //...
21 } catch (SQLException sqle) {//...}
22 }
23 }

Listing 3.13: SQL injection case from WebGoat.

We found this concept is quite similar to the entry point classes and lifecycle methods in An-
droid apps. It can be reduced to a subtyping implementation as shown in Listing 3.14. Instead of

67

3.6 Application of GenCG on the Spring Framework

Table 3.5: Entry points annotations in Spring.

Entry Point Classes Entry Point Methods
org.springframework.stereotype.Controller org.springframework.web.bind.annotation.GetMapping
org.springframework.web.bind.annotation.RestController org.springframework.web.bind.annotation.PostMapping
org.springframework.stereotype.Component org.springframework.web.bind.annotation.DeleteMapping
org.springframework.stereotype.Repository org.springframework.web.bind.annotation.PatchMapping
org.springframework.stereotype.Service org.springframework.web.bind.annotation.PutMapping
org.springframework.web.servlet.handler.HandlerInterceptorAdapter org.springframework.web.bind.annotation.RequestMapping
org.springframework.web.servlet.HandlerInterceptor org.springframework.web.bind.annotation.ExceptionHandler

org.springframework.web.bind.annotation.InitBinder
org.springframework.messaging.handler.annotation.MessageMapping

using annotations, the framework could define an interface SqlInjectionLession2_GenCG that
declares a method completed(), which is called by the framework. The SqlInjectionLession2
class that implements this interface would have the same effect as the original class. If we have
such an implementation of SqlInjectionLession2 in the application code, and the interface
in the placeholder.jar generated by Averroes-GenCG, the application-only call graph con-
structed with our GenCG approach will have a call edge from the Library.doItAll() method
to the handler method SqlInjectionLession2.completed().

1 // in instrumemnted−app.jar
2 public class SqlInjectionLession2 implements SqIInjectionLession2_GenCG {
3 private final LessonDataSource dataSource;
4

5 public SqlInjectionLesson2(LessonDataSource dataSource) {
6 this.dataSource = dataSource;
7 }
8

9 @ResponseBody
10 public AttackResult completed(@RequestParam String query) {// source: parameter query
11 return injectableQuery(query);
12 }
13

14 protected AttackResult injectableQuery(String query) {
15 try (var connection = dataSource.getConnection()) {
16 Statement statement = connection.createStatement(TYPE_SCROLL_INSENSITIVE,

CONCUR_READ_ONLY);
17 ResultSet results = statement.executeQuery(query); // sink: execute the untrusted SQL query
18 // ...
19 } catch (SQLException sqle) {// ...}
20 }
21 }
22 }
23

24 // in placeholder.jar
25 public interface SqIInjectionLession2_GenCG{
26 public AttackResult completed(@RequestParam String query);
27 }

Listing 3.14: Reduction from annotations to subtyping.

For each entry point class annotation listed in Table 3.5, Averroes-GenCG checks if there
are methods that are annotated with the entry point method annotations in this table. If
it is the case, Averroes-GenCG generates an artificial interface just like the SqlInjection-
Lession2_GenCG interface in Listing 3.14 for the placeholder.jar. It also instruments the
original entry point class to implement this interface. This artificial interface will be handled
as a library interface by Averroes-GenCG, thus it invokes the methods of this interface in
the Library.doItAll() and creates objects for the entry point classes in Library.main().
The instrumented classes together with other classes in the application will be written into an

68

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

instrumented-app jar file (see Figure 3.5). This instrumented-app is then used as an input
for call graph construction in our approach.

3.6.2 Handling Bean Autowiring

As introduced, the IoC container in Spring creates beans and resolves dependency relationships
between beans automatically. This process is called bean autowiring [Bae21]. Three annotations
are used in Spring to resolve dependencies: @Autowired (defined in Spring), @Inject (defined in
JSR-330) and @Resource (defined in JSR-250). These three annotations work similarly. They
can be used to annotate class properties (fields), constructors and setters. We explain here with
the @Autowired annotation.

1@Controller
2 public class MyController{
3

4 @Autowired
5 private MyService myService; // instantiated by Spring.
6

7 @PostMapping("/register")
8 public void doRegistration(HttpServletRequest request, HttpServletResponse response) throws

IOException {
9 String username = request.getParameter("username");

10 response = myService.getResponse(username); // missing call edge
11 }
12

13 @Autowired // autowiring on constructor
14 public MyController(MyResource r){
15 this.myResource = r;
16 }
17

18 @Autowired // autowiring on setter
19 public void setResource(MyResource r){
20 this.myResource = r;
21 }
22 }

Listing 3.15: Autowiring in Spring.

In Listing 3.15, the field myService is annotated with @Autowired at line 4. In the application
code, there is no code which instantiates this field. Instead, the field will be instantiated by the
Spring framework. Without modeling this behavior, the application-only call graph constructed
with VTA, RTA or Spark will miss the edge from caller MyController.doRegistration to the
callee MyService.getResponse. This is because these algorithms take object allocation sites
into account and limit the type of receiver to types of objects that have been instantiated in
the program. In this example, no allocation site (i.e. new MyService()) for myService can
be found in the application code. As a result, the callee MyService.getResponse will not be
resolved in the call graph construction and potentially result in false negatives for analysis using
the constructed call graph.

@Autowired can be also used to annotate constructors (see line 13) and setters (see line 18).
Both the constructor and the setter in Listing 3.15 are called by Spring with an instance of
MyResource as an argument. How Spring should instantiate this argument is defined either in a
XML file as shown in Listing 3.16 or directly in Java code using the @Bean annotation as shown
in Listing 3.17. In this example, the argument will be instantiated with its id equal to 123 and
its name equal to abc by Spring.

Averroes-GenCG scans fields and methods in application classes that are declared with
these autowiring annotations and handles them in a general way. For each field that is autowired,

69

3.6 Application of GenCG on the Spring Framework

1<?xml version="1.0" encoding="UTF−8"?>
2<!DOCTYPE beans PUBLIC "−//SPRING//DTD BEAN 2.0//EN"
3 "http://www.springframework.org/dtd/spring−beans−2.0.dtd">
4

5<beans>
6 <bean id="resourceOne" class="MyResource">
7 <property name="id" value="123"></property>
8 <property name="name" value="abc"></property>
9 </bean>

10</beans>

Listing 3.16: Bean defined in XML configuration.

1@Configuration
2 public class Config{
3

4 @Bean
5 public MyResource resourceOne(){
6 return new MyResource("123", "abc");
7 }
8 }

Listing 3.17: Bean defined in Java code.

Averroes-GenCG instruments the default constructor to instantiate the field. If the type of
the field is a concrete class, an object of this type will be created with default property values
and assigned to the annotated field. If the type of the field is an abstract class or interface, for
each concrete subclass, an object will be created and assigned. Such subtying relationship can
be easily obtained from the class hierarchy Averroes-GenCG computes. Assume MyService
in Listing 3.15 is an interface with only two implementations: class ServiceOne and class
ServiceTwo. The generated code for the annotated field is presented in the MyController
class in Listing 3.18 at line 5- 11. We again use a nondeterministic predicate p (introduced in
Section 3.4.1) to model that the field myService could be both types of objects. The annotated
constructor and setter are regarded as annotated callback methods by Averroes-GenCG.
Invocations of them are generated in the Library.doItAll() method as shown at line 18 -
25 in Listing 3.18. Averroes-GenCG does not search the concrete property values of each
bean defined with the annotation @Bean or in the XML configuration to stay general. It uses
some default values for primitive types and null for reference types. We lose precision by doing
this, however, call edges to methods of autowired objects will be captured in the call graph
construction using the instrumented app.

70

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

1 public class MyController implements MyController_GenCG {
2 @Autowired
3 private MyService myService;
4

5 public MyController() {
6 // instrumented code for instantiating autowired field
7 if (p)
8 this.myService = new ServiceOne(0);
9 if (p)

10 this.myService = new ServiceTwo(0);
11 }
12 // ...
13 }
14

15 public class Library {
16 public void doItAll(){
17 //...
18 MyController_GenCG c = this.LPT_1;
19 MyResource r = this.LPT_2;
20 if(p)
21 c.<init>(r); // call the anmotated constructor
22 MyController_GenCG c = this.LPT_1;
23 MyResource r = this.LPT_2;
24 if(p)
25 c.setResource(r); // call the annotated setter
26 //...
27 }
28

29 public static void main(String[] args) {
30 this.LPT_1 = new MyController();
31 this.LPT_2 = new MyResource();
32 // ...
33 }
34 }

Listing 3.18: Instrumented code for handling autowiring.

3.6.3 Implementation Details

Spring applications usually use Spring Boot to create stand-alone executable files [Spr21]. Both
jar and war files are supported by Spring Boot. Since our implementation of Averroes-
GenCG is built on top of Soot and Soot doesn’t support analyzing war files, we only consider
jar files created by Spring Boot. Unlike shaded jar files (a jar file that contains all application
classes and library classes) that are hard to differentiate between library classes and application
classes, Spring Boot generates nested jar files with a clear file structure as shown in Figure 3.13.
The application classes are placed under the BOOT-INF/classes directory, while the dependen-
cies can be found in BOOT-INF/lib. Averroes-GenCG scans such executable jars and gener-
ates an organized-app.jar which contains only application classes and an organized-lib.jar
containing all library classes from the dependency jars in BOOT-INF/lib. It then processes these
two jar files with Soot, builds class hierarchy, instruments classes, generates code etc.

3.6.4 Evaluation with CGBench

To evaluate how effective Averroes-GenCG is on Spring applications, we developed a bench-
mark suite called CGBench with ground-truth documentation. CGBench consists of 42 Spring
apps classified into 6 categories. 39 of them are micro benchmark apps to demonstrate specific
Spring features with one or two built-in taint-style vulnerabilities such as SQL Injection, XSS,

71

3.6 Application of GenCG on the Spring Framework

exampleApp.jar
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-BOOT-INF
 +-classes
 | +-example.app
 | +-example.app.package
 | +-ApplicationClass1.class
 | +-ApplicationClass2.class
 | +-...
 +-lib
 +-dependency1.jar
 +-dependency2.jar
 +-dependency3.jar
 +-...

Figure 3.13: File structure of the executable jar format supported by Spring Boot.

Log Injection etc. The vulnerabilities in these apps are all expected taint flows. 3 of the 42
apps are bigger apps that are built to demonstrate vulnerabilities. These 3 apps contain multi-
ple Spring features and taint-style vulnerabilities. The ground truth documentation CGBench
consists of 60 expected and 10 unexpected taint flows. We configured FlowDroidGen with
the sources and sinks in each benchmark app and analyzed the instrumented app generated by
Averroes-GenCG. Table 3.6 shows the evaluation results of FlowDroidGen on CGBench.
In total, FlowDroidGen detected 44 expected taint flows out of 60 and 5 unexpected taint
flows out of 10, which makes the precision 0.90, the recall 0.73 and the F-measure 0.81. In the
following, we introduce in detail how FlowDroidGen performs on each category of CGBench.

Table 3.6: Evaluation results of FlowDroidGen on CGBench.

No. Category Expected Taint Flows Unexpected Taint Flows True Positives False Positives
1 HTTP Request Handlers 9 0 8 0
2 Component Classes 5 0 4 0
3 Handler Interceptors 6 0 6 0
4 Parameter Sources 19 0 16 0
5 Configuration 6 0 0 0
6 Demo Apps with Mixed Features 15 10 10 5

∑ 60 10 44 5
Precision 0.90

Recall 0.73
F-measure 0.81

72

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Table 3.7: Benchmark Category: HTTP Request Handlers.

No. Benchmark App Features Vulnerability Type Expected Taint Flows True Positives
1 deletemapping @DeleteMapping, @RestController Command Injection 2 2
2 getmapping @GetMapping, @RestController SQL Injection 1 1
3 patchmapping @PatchMapping, @RestController SQL Injection 2 2
4 postmapping @PostMapping, @Controller Command Injection 1 1
5 putmapping @PutMapping, @RestController SQL Injection 1 1
6 requestmapping @RequestMapping, @RestController Open Redirect Attack 1 1
7 exceptionhandler @ExceptionHandler, @RestController Reflected XSS 1 0

∑ 9 8

Table 3.7 lists the benchmark apps in CGBench that uses Spring annotations to define
HTTP request handlers. FlowDroidGen detected all vulnerabilities in these apps, except
the one in the exceptionhandler app. Listing 3.19 shows the code of the false-negative
case. Although the call graph used by FlowDroidGen captures the call from Spring (i.e.
Library.doItAll()) to the annotated exception handler invalidNumberExceptionHandler,
its parameter ex is not mapped to the NumberFormatException thrown at line 18 containing
the untrusted uid. This aliasing relationship needs to be modeled in FlowDroidGen’s taint
analysis.

1@RestController
2 public class MyController {
3 @ExceptionHandler(value = {NumberFormatException.class})
4 public void invalidNumberExceptionHandler(NumberFormatException ex, HttpServletResponse

response) throws IOException {
5 String uid = ex.getMessage();
6 response.setContentType("text/html;charset=UTF−8");
7 response.setCharacterEncoding("UTF−8");
8 response.getWriter().append(uid); // sink
9 }

10

11 @GetMapping(value = "/", produces = MediaType.TEXT_PLAIN_VALUE)
12 public void retrieveUserInformation(HttpServletRequest request) {
13 String uid = request.getParameter("uid"); // source
14 try {
15 int userID = Integer.parseInt(uid); // throws NumberFormatException if user gives non−numbers
16 // ... retrieves the user information from the database using userID
17 } catch (NumberFormatException ex) {
18 throw new NumberFormatException("invalid user id = " + uid);
19 }
20 }
21 }

Listing 3.19: False negative case from the exceptionhandler app in CGBench.

Table 3.8 lists benchmark apps that use annotations to declare component classes. A com-
ponent class in Spring is responsible for some operations and will be automatically detected by
Spring for dependency injection. These component classes are considered as entry point classes
by Averroes-GenCG (see entry point classes in Table 3.5). FlowDroidGen was able to an-
alyze all code that capture the expected taint flows. For the taint flow in the benchmark app
simplerestcontroler, the user can send a message over a request parameter which is directly
returned in the response body without sanitization. It is an injection vulnerability, if the mes-
sage is some piece of malicious code. Although the execution of the malicious code is not in
the Spring application code, to capture this vulnerability one can specify the return value of an
annotated request handler to be the sink. However, FlowDroidGen doesn’t support configuring
such sinks, thus, resulted in false negative.

73

3.6 Application of GenCG on the Spring Framework

Table 3.8: Benchmark Category: Component Classes

No. Benchmark App Features Vulnerability Type Expected Taint Flows True Positives

8 component @Component,
@RestController, @GetMapping Reflected XSS 1 1

9 repository @Repository,
@RestController, @GetMapping SQL Injection 1 1

10 service @Service,
@RestController, @GetMapping Reflected XSS 1 1

11 simplecontroller @Controller,
@RequestMapping Command Injection 1 1

12 simplerestcontroller @RestController,
@RequestMapping Command Injection 1 0

∑ 5 4

Table 3.9 lists benchmark apps that demonstrate the usage of Spring handler interceptors.
The HandlerInterceptor interface declares three methods on where one wants to intercept
the HTTP request: preHandle() is called before the actual HTTP request handler is exe-
cuted; postHandler is called after the handler; afterCompletion() is called after the request
is completed and view is rendered. HandlerInterceptorAdaptor is an abstract class that
implements the HandlerInterceptor interface and provides some base implementation. All
application classes that are subtypes of these two classes are considered as entry point classes
by Averroes-GenCG (see entry point classes in Table 3.5) and callback methods are invoked
in the Library.doItAll(). As introduced in Section 3.4.1, the skip-method/classes edges and
loop edges in Library.doItAll() ensure that all possible orders of method calls are captured,
including the order where the respective interceptor method is called. All expected taint flows
in this benchmark category are detected by FlowDroidGen.

Table 3.9: Benchmark Category: Handler Interceptors

No. Benchmark App Features Vulnerability Type Expected Taint Flows True Positives

13 handlerinterceptoradapteraftercompletion @Configuration,
HandlerInterceptorAdapter.afterCompletion() Log Injection 1 1

14 handlerinterceptoradapterposthandle @Configuration,
HandlerInterceptorAdapter.postHandle() Log Injection 1 1

15 handlerinterceptoradapterprehandle @Configuration,
HandlerInterceptorAdapter.preHandle() Log Injection 1 1

16 handlerinterceptoraftercompletion @Configuration,
HandlerInterceptor.afterCompletion() Log Injection 1 1

17 handlerinterceptorposthandle @Configuration,
HandlerInterceptor.postHandle() Log Injection 1 1

18 handlerinterceptorprehandle @Configuration,
HandlerInterceptor.preHandle() Log Injection 1 1

∑ 6 6

Table 3.10 lists benchmark apps that contain expected taint flows of which the sources are
annotated parameter methods. The original FlowDroid doesn’t support configuring annotated
parameter as sources, we extended FlowDroidGen with this feature.

74

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

Table 3.10: Benchmark Category: Parameter Sources

No. Benchmark App Features Vulnerability Type Expected Taint Flows True Positives

19 cookievalue @CookieValue,
@RestController, @GetMapping SQL Injection 1 1

20 initbinderwithoutvalue @InitBinder, @RequestParam,
@RestController, @GetMapping Reflected XSS 1 1

21 initbinderwithvalue @InitBinder, @RequestParam,
@RestController, @GetMapping Reflected XSS 1 1

22 modelattributeonargumentlevel @ModelAttribute,
@RestController, @RequestMapping Information Leak 1 1

23 modelattributeonargumentlevelwithfalsebinding @ModelAttribute,
@RestController, @RequestMapping Information Leak 1 1

24 modelattributewithaddattribute @ModelAttribute,
@RestController, @RequestMapping

Reflected XSS,
Trust Boundary Violation 2 1

25 modelattributewithreturnvalue @ModelAttribute,
@RestController, @RequestMapping Trust Boundary Violation 1 0

26 pathvariable @PathVariable,
@RestController, @GetMapping Trust Boundary Violation 1 1

27 requestattribute @RequestAttribute,
@RestController, @GetMapping Information Leak 2 2

28 requestheader @RequestHeader,
@RestController, @GetMapping Open Redirect Attack 1 1

29 requestparam @RequestParam,
@RestController, @GetMapping SQL Injection 1 1

30 requestpart @RequestPart,
@RestController, @GetMapping SQL Injection 1 1

31 matrixvariable @MatrixVariable, @Configuration,
@RestController, @GetMapping SQL Injection 1 1

32 sessionattribute @SessionAttribute,
@RestController, @GetMapping

Stored XSS,
Reflected XSS 2 1

33 sessionattributes @SessionAttributes,
@Controller, @GetMapping

Stored XSS,
Reflected XSS 2 2

∑ 19 16

Table 3.11 lists benchmark apps that involve configuration, which are not modeled by
Averroes-GenCG at all. Consequently, FlowDroidGen detects none of the expected flows
in these apps.

Table 3.11: Benchmark Category: Configuration

No. Benchmark App Features Vulnerability Type Expected Taint Flows True Positives
34 bean @Bean Information Leak 1 0
35 beanwithclassxmlconfiguration XML Configuration Information Leak 1 0
36 controlleradvice @ControllerAdvice Reflected XSS 1 0
37 springmvcwithfreemarker Freemarker SQL Injection 1 0
38 springmvcwithjsp JSP SQL Injection 1 0
39 springmvcwiththymeleaf Thymeleaf SQL Injection 1 0

∑ 6 0

Table 3.12 shows the bigger demo apps that include multiple vulnerabilities and framework
features. There are a few expected taint flows FlowDroidGen could not detect, because third-
party library methods that can generate new taints are not considered by the analysis, i. e., no
summaries are available. Similarly, lack of analyzing third-party methods that are sanitizers
caused false positives.

Table 3.12: Demo Apps with Mixed Features

No. Benchmark App Expected Taint Flows Unexpected Taint Flows True Positives False Positives
40 onlineshop 6 5 5 3
41 onlinechat 3 0 1 0
42 teleforum 6 5 4 2

∑ 15 10 10 5

75

3.7 Related Work

3.7 Related Work

Many previous approaches have addressed the challenge of modeling Java frameworks. In terms
of Android, FlowDroid [ARF+14] precisely models the Android lifecycle and UI callback han-
dling by creating a dummy main method. Amandroid [WROR14] and IccTA [LBB+15] extend
this model by introducing control and data dependencies between Android components such that
inter-component communications are also captured. While these approaches don’t analyze the
Android framework, DroidSafe [GKP+15] took another approach by manually crafting stub
implementations of the framework. Similar to the placeholder library used in our approach, these
stub implementations are analyzed as replacements of the original framework implementations.
However, as the authors themselves pointed out, implementing these stubs is labor-intensive
and requires expertise in Android. These tools model Android’s behavior in its implementation,
thus their models can not be reused easily for other tools; however, both Droidel [BGC15] and
our approach automatically creating app-specific stubs of the Android framework with a single
entry point. While the authors of Droidel acknowledged that their approach is not suitable for
flow-sensitive analyses, our evaluation on TaintBench with the flow-sensitive taint analysis
in FlowDroid shows that our approach works well. While our approach only needs the stub
version of the Android framework that is available in the Android SDK, Droidel still requires a
one-time manual modification of the original Android framework source code to replace usage
of reflection with the Droidel’s own interfaces. Moreover, Droidel is limited only to Android,
but our Averroes-based approach is designed to be general for Java frameworks.

In terms of modeling Java web frameworks, IBM’s TAJ [TPF+09] and its follow-up work
F4F [SAP+11] are among the best-known approaches targeting Java enterprise applications.
TAJ is a taint analysis tool that has partly modeled the Apache Struts framework and Enterprise
Java Beans in its analysis engine. Adding a new framework support requires engineering effort
in the analysis engine. In that way, it is quite similar to most of the taint analysis tools for
Android discussed before. The follow-up work F4F is an approach that augments the taint
analysis engine to handle new frameworks without modifying the analysis engine. It generates
a specification of app-specific framework-related behavior in the specification language WAFL,
which can be used to enhance an existing taint analysis engine. Although this approach is
an improvement over TAJ regarding reusability, an analysis engine still needs to support the
WAFL specification, and new WAFL generators need to be written to support new frameworks.
In comparison to this approach, our approach doesn’t require any extension of the analysis tool,
the generated placeholder library can be processed by any existing Java analysis frameworks
(e. g., Soot, WALA). To support a new framework with our approach, one only needs to extend
the configurable lists of APIs (i. e., entry point classes/methods/annotations, annotations for
dependency injection) that should be considered by Averroes-GenCG. Similar to F4F, recent
work JackEE [AFK+20] also introduces a rule-based specification that covers general concepts
for modeling Java enterprise framework behaviors. JackEE leverages Doop and its model of a
new framework is a collection of logic rules, which can be understood by Doop.

Our work was inspired by and based on Averroes [AL13] which generates a placeholder
library that over-approximates the original library. While Averroes was focused on the sound-
ness of the call graphs and the authors did not consider application of it by client analyses, the
goal of our work is to construct call graphs that are not only sound, but also allow a precise client
analysis effectively finding more issues. We discuss the shortcomings of Averroes when apply-
ing it to a precise interprocedural taint analysis and address these in our Averroes-GenCG.
Our evaluation shows that our approach allows an Android taint analysis more effectively finding
real-world taint flows.

76

Chapter 3. GenCG: A General Approach to Modeling Java Framework Behaviors

3.8 Limitations and Threats to Validity

Since our approach is designed to be general, we only consider language-level concepts (e. g., sub-
typing, annotations) and explicitly did not model framework behaviors that require to parse
configuration files (e. g., XML, HTML files). Client analyses which need such information are
required to add this support by themselves.

A threat to the external validity in our study is that our evaluation results have limited
generalizability to other client analyses. Because our focus is constructing call graphs that allow
taint analyses to effectively find more real-world issues, we only evaluated our approach with
the taint analysis in FlowDroid. FlowDroid uses StubDroid to generate summaries for
handling the taint propagation through common library methods. These summaries cover many
methods from the Android framework. Our version FlowDroidGen uses existing summaries
in FlowDroid and only analyzes placeholder methods if no summaries are available. Other
taint analysis approaches that do not model taint propagation through library methods, with
our approach they might still produce imprecise results.

3.9 Conclusion
In this chapter, we proposed GenCG—a general approach to modeling Java frameworks. Our
Averroes-GenCG produces a placeholder library that can be used as a sound replacement of
the original framework by precise call graph construction algorithms and further client analyses.
We demonstrate its generalization with both the Android and the Spring framework. Experi-
ments on Android show our approach is especially effective in enabling a precise flow-,field- and
context-sensitive taint analysis in detection of more real-world issues without introducing much
noise. We constructed a micro benchmark suite—CGBench—consisting of common taint-style
vulnerabilities in Spring-based web applications. We evaluate our approach using this suite and
show the effectiveness.

77

3.9 Conclusion

78

Towards Path-Sensitive Analysis with
COVA

4
In the previous chapter, we introduced our work on constructing complete call graphs for
framework-based applications. However, even given a complete enough call graph, analysis
precision is still the key factor that impacts the adoption of static analysis tools by develop-
ers and security analysts. Existing studies show that static analysis tools are most likely to be
adopted if they yield high precision, i.e., a low rate of false positives [CB16, JSMB13]. To achieve
high precision, static taint analysis tools incorporate various sensitivities (e. g., field-sensitivity,
context-sensitivity, object-sensitivity etc.). However, as Li et al. pointed out in their literature
review [LBP+17], path-sensitivity has been rarely considered by static analysis tools for Android
apps. As a result, these tools can only permit one to conclude how many potential taint flows
they detect in a given application, but not of which nature those taint flows exactly are, i.e.,
under which path conditions they can occur at runtime, and what could be done further to dis-
card potentially false positives within those taint flows. Analysis tools ignoring code conditioned
for software and hardware settings can produce taint flows that developers might not even care
about, e. g., the application is only targeting devices with Android version 5.0+ (API level 21+).
In this case, developers might want to only see taint flows occuring in code guarded by a version
check for the targeted devices. A path-sensitive analysis would be able to exclude uninteresting
taint flows.

To provide information that can be used for such cases, we introduce a standalone tool
COVA in this chapter. COVA combines both SMT solving and interprocedural data-flow
analysis that is flow-, context-, and path-sensitive. It computes partial path constraints that
can be used to eliminate false positives along unsatisfiable paths (i. e., path constraint contains
contradictory conditions), enhance results produced by a client analysis or even generate user
inputs to dynamically validate static findings. The outline of the chapter is as follows: we first
motivate the work with an example explaining how complex path conditions in Android apps can
be in Section 4.1. We further explain in Section 4.2 that the computation of path constraints is a
non-distributive problem and introduce the VASCO framework that can be used for solving such
non-distributive problems. We introduce details of COVA’s constraint analysis in Section 4.3
and its architecture in Section 4.4. Evaluation of COVA on ConstraintBench—a micro
benchmark suite comprising 100 test programs is presented in Section 4.5. In Section 4.6, we
introduce the study of Android taint-analyses results using COVA that was published at the
ASE conference [LBS19]. To demonstrate the feasibility of using COVA for dynamic validation
of static findings, a master thesis [Hau21] supervised by me that extends COVA for this purpose
is introduced in Section 4.7. We discuss the limitations in Section 4.8, compare COVA to existing
work in Section 4.9, and conclude the chapter in Section 4.10.

79

4.1 A Motivating Example

Figure 4.1: A motivating example.

4.1 A Motivating Example
Figure 4.1 shows an Activity that contains a data leak—a simplified example. The activity first
reads the unique device identifier (line 8), stores it into variable deviceId before method onClick
uses the variable and sends an SMS containing the identifier to the phone number “+1234”
(line 15). State-of-the-art static taint-analysis tools for Android, e.g., FlowDroid [ARF+14],
AmanDroid [WROR14] or DroidSafe [GKP+15], are capable of detecting such leaks with a high
precision. However, as we observed during our study, these precision dimensions are insufficient
when trying to understand how and when apps leak data.

While any of the mentioned taint-analysis tools report the leak in Figure 4.1, no tool
reports that the leak can only occur under a specific execution path, as they are not path-
sensitive [QWR18]. The app leaks the device identifier only when it executes the source and
sink statements and every statement along the data-flow path. Their execution depends on three
path conditions. First, the app must run the correct Android SDK version (line 7), second, the
user must trigger the app to execute the onClick callback by pressing a button (line 11), and
third, a special system feature has to be enabled on the execution device (line 14).

For an automatic analysis of the conditions under which a statement may be executed, we
implemented the static analysis tool COVA. COVA computes a constraint map which associates
each statement of a program with the path conditions required to execute that statement. Client
analyses can use the constraint map computed by COVA to enrich or refine their analysis results.
For a taint analysis that reports the data leak in the motivating example, the logical formula
Csource ∧Csink approximates the conditions under which the data leak happens:

• Csource ≡ SDK ≤ 26: to execute the source, the Android SDK version must be smaller or
equal to 26,

• Csink ≡ CLICK∧TELEPHONY: to execute the sink, the user presses a button (CLICK)
and the execution device support the telephony feature (TELEPHONY).

Both constraints Csource and Csink can be simply queried from the constraint map COVA

80

Chapter 4. Towards Path-Sensitive Analysis with COVA

computes. For taint analysis tools that also report a witness data-flow path, the constraints
along the path can be logically joined if more precision is desired. Because path-sensitively
analyzing all feasible paths in large programs is known to be expensive, COVA only assumes
symbolic values for certain APIs, which we call constraint-APIs. For the motivating example,
the constraint-APIs COVA considers are:

• Build.VERSION.SDK_INT

• PackageManager.hasSystemFeature

• OnClickListener.onClick

The list of constraint-APIs is configurable in COVA. By default, COVA tracks values from
three kinds of constraint APIs for Android apps:

• UI interactions: UI callbacks that are responsible for handling user interactions.

• Environment settings: APIs for getting hardware and software configuration such as plat-
form version, country etc.

• I/O operations: APIs for data input via I/O streams or file system, which are mainly from
the java.io package.

COVA performs a context-, flow-, and field-sensitive data-flow analysis starting from the entry
point of the program. In Figure 4.1, the entry point of the activity is onCreate and it is always
executable, thus the statement at line 5 has the initial constraint TRUE. At each reachable
invocation of a constraint-API, COVA generates a data-flow fact, simply referred to by symbolic
taint. At line 19, COVA creates a symbolic taint (sdk, TRUE, SDK): sdk is the variable
containing the value returned from the constraint-API; the second entry TRUE is the constraint
under which the taint reaches the current statement; SDK stands for the symbolic value reading
from Build.VERSON.SDK_INT. COVA then propagates such symbolic taints along the inter-
procedural control-flow graph (ICFG) of the program and creates constraints over the symbolic
values of taints whenever taints are used in conditional statements.

For instance, the return value of the method isRightVersion() is true when the SDK
version is at most 26. The Android app further branches (indirectly) based on the version at
the if-statement at line 20. COVA generates the symbolic taint (ret, SDK ≤ 26, true) for the
statement at line 23; the taint encodes that the return value ret equals true when the version
is SDK ≤ 26. This taint propagates back to the call site in line 6 as taint (z, SDK ≤ 26,
true). Because Android apps intensively interact with user actions, COVA also symbolically
represents them. COVA creates a constraint CLICK at the entry of the callback method
OnClickListener.onClick and propagates this constraint to all statements reachable from this
method. COVA propagates all symbolic taints from the constraint-APIs and simultaneously
computes a constraint for each reachable statement based on available taints at the current
statement. Once the data-flow propagation is completed, the constraint map is also computed.

Basically, COVA can be understood as a taint analysis without sinks and the constraint-APIs
being the sources. Symbolic taints are propagated as usual along ICFG. At each program point
where a path condition is associated with the variable of a symbolic taint, both the constraint
carried by each symbolic taint and the constraint of the current statement are updated. Details
about how COVA updates the constraints are introduced in Section 4.3.

81

4.2 Non-Distributivity

4.2 Non-Distributivity

Computing the constraint map with a data-flow analysis as shown in Figure 4.1 is a non-
distributive problem [Kil73], since the execution of a branch may simultaneously depend on two
or more values of some constraint-APIs. Listing 4.1 shows a non-distributive case in which
line 5 and 6 are executed depending on the values of both manufacturer and model. As-
sume the analysis uses MODEL to symbolically represent the value of model and MANU
the value of manufacturer. A symbolic expression that precisely describes the path con-
straint for line 5 should be MODEL.startsWith(MANU). However, this expression can
only be computed if we know both the value of model and manufacturer at the same time
when evaluating the if-statement at line 4. When using distributive frameworks like IFD-
S/IDE [RHS95], each data-flow fact is propagated separately. This means when evaluating
the if-statement at line 4 in the flow function, only one value is present. Assume we want to
compute the path constraint after the if-statement with only the data-flow fact tracking the
variable model. Since we do not know whether manufacturer is tracked or not and which value
it holds, one could just generate a path constraint assuming manufacturer holds a symbolic
value X, e. g., MODEL.startsWith(X). Similarly, when evaluating the if-statement with only
the data-flow fact tracking the variable MANU, the constraint could be Y.startsWith(MANU)
if we assume model holds a symbolic value Y . Now the question is, how can one merge
MODEL.startsWith(X) and Y.startsWith(MANU) to represent a final path constraint for
line 5? It is difficult to get a path constraint as precise as MODEL.startsWith(MANU).

Thus, the flow function that precisely evaluates the if statement at line 4 is not distribu-
tive/separable (i. e., f(model ⊓manufacturer) ≠ f(model) ⊓ f(manufacturer)). An analysis
must jointly propagate all values to compute the final path constraint for a branch. Furthermore,
each value of a constraint-API must be propagated throughout the whole program, since values
can flow to fields of objects before the fields are re-accessed elsewhere and aliasing relations must
be computed. Computation of aliases is also a well-known non-distributive problem [SDAB16],
which is essential for a precise data-flow analysis.

1 public void checkDeviceName() {
2 String manufacturer = Build.MANUFACTURER; // constraint−API
3 String model = Build.MODEL; // constraint−API
4 if (model.startsWith(manufacturer)) {
5 doThis(); // MODEL.startsWith(MANUFACTURER)
6 } else
7 doThat();
8 }
9 }

Listing 4.1: A non-distributive case.

4.3 The Inter-procedural Constraint Analysis in COVA

We implemented the constraint analysis in COVA within the data-flow framework VASCO [PK13],
which solves non-distributive inter-procedural data-flow problems in a context- and flow-sensitive
manner.

4.3.1 The VASCO Framework

VASCO uses data-flow values (facts) as contexts for method calls and iterates a worklist of
contexts. A value context X is defined as a pair ⟨method, entryV alue⟩ with entryV alue being
the value at the entry of method with regard to a call node. Each context X has a worklist of

82

Chapter 4. Towards Path-Sensitive Analysis with COVA

edges, denoted as X.worklist. Whenever a context X is initialized (see Algorithm 1), all edges
in the CFG of X.method are added to X.worklist (line 13). This is different than in the original
algorithm in which only nodes in CFG are iterated. Iterating the edges allows the flow functions
to be branch-sensitive, such that our analysis can generate constraints based on which branch
of a conditional statement is currently considered. In the procedure InitContext, the IN and
OUT values are initialized with � except the entry node head(X.method).

Algorithm 1 Initialization of a value context X ∶= ⟨method, entryV alue⟩
1: procedure InitContext(X)
2: Add(contextWorklist,X)
3: Add(contexts,X)
4: X.worklist← ∅
5: EXIT [X]← �
6: for all node n in CFG of X.method do
7: if n = head(X.method) then
8: IN[X,n]←X.entryV alue
9: else

10: IN[X,n]← �
11: if succs(n) ≠ ∅ then
12: for all node s ∈ succs(n) do
13: Add(X.worklist, ⟨n, s⟩)
14: OUT [X,n, s]← �
15: else
16: Add(X.worklist, ⟨n,n⟩)
17: OUT [X,n,n]← �

Algorithm 2 is a modified version of the interprocedural analysis in VASCO tailored for
our constraint analysis that computes path constraints. Line 1 defines three global variables: a
worklist of context-parametrized CFG edges that has to be processed (contextWorklist), a set of
value contexts that have been created (contexts) and a transition table mapping a value context
and a call site to the value context at the callee (transitions). The procedure doAnalysis
starts with initializing a context ⟨entryPoint,BI⟩ for each entry point method of the program
(e. g., for a classic Java program it is the main method). BI is the a data-flow fact holds at
the entry point method. The procedure propagates data-flow facts from statement to statement
along the ICFG. The flow functions define how a data-flow value changes when it flows from
one statement to a successor. The procedure terminates when data-flow facts for all statements
reach a fixed point, i. e., no new value context can be computed. The flow functions have generic
arguments and they define which information to maintain, generate or kill for each control-flow
edge. The flow functions accept a data-flow value d ∈ D and a control-flow edge ⟨n,m⟩ of the
ICFG as input, and output a new value d′ ∈D. Similarly to IFDS [RHS95], VASCO differentiates
between the following four kinds of functions regarding an edge ⟨n, s⟩:

• NormalFlowFunc: handles intra-procedural flows where n is not a call site.

• CallLocalFlowFunc: handles intra-procedural flows where n is a call site. It propa-
gates the values of local variables not used at the call site.

• CallEntryFlowFunc: handles an inter-procedural flow from call site n to the first
statement m of a callee. It typically maps actual method arguments to formal parameters.

83

4.3 The Inter-procedural Constraint Analysis in COVA

• CallExitFlowFunc: handles an inter-procedural flow from a return statement n to the
successorm of a call site. It is the inverse of CallEntryFlowFunc and maps parameters
and return value back to the call site.

Algorithm 2 Modified interprocedural analysis in VASCO
1: global: contextWorklist, contexts, transitions
2:
3: procedure doAnalysis
4: for all entryPoint ∈ entryPoints do
5: InitContext(⟨entryPoint,BI⟩)
6: while contextWorklist ≠ ∅ do
7: X ←GetLast(contextWorklist)
8: if X.worklist ≠ ∅ then
9: ⟨n, s⟩← PollFirst(X.worklist)

10: if n /∈ heads(X.method) then
11: IN[X,n]← ⊔{OUT [X,p,n]∣p ∈ preds(n)}
12: in← IN[X,n]
13: out← �
14: if n does not contain a method call then
15: out← NormalFlowFunc(X,n, s, in)
16: else
17: m← CalleeMethod(n)
18: e← CallEntryFlowFunc(X,m,n, s, in)
19: X ′ ∶= ⟨m,e⟩
20: if X ′ /∈ contexts then
21: InitContext(X ′)
22: else
23: x← EXIT [X ′]
24: r ← CallExitFlowFunc(X,m,n, s, x)
25: l ← CallLocalFlowFunc(X,n, s, in)
26: out← l ⊔ r
27: add edge (⟨X,n⟩,X ′) to transitions
28: if out ≠ OUT [X,n, s] then
29: for all s′ ∈ succs(s) do
30: Add(X.worklist, ⟨s, s′⟩)
31: OUT [X,n, s]← out

32: else
33: Remove(contextWorklist,X)
34: exit← ⊔{OUT [X,n,n]∣n ∈ tails(X.method)}
35: if exit ≠ EXIT [X] then
36: EXIT [X]← exit
37: for all edges (⟨X ′, c⟩,X) in transitions do
38: Add(contextWorklist,X ′)
39: for all s ∈ succs(c) do
40: Add(X ′.worklist, ⟨c, s⟩)

84

Chapter 4. Towards Path-Sensitive Analysis with COVA

4.3.2 Analysis Domain

The domain D for our constraint analysis in VASCO is two-dimensional: C × 2T, where C is
a constraint domain and T is a taint domain. We use � ∈ D to denote an unknown fact. If
data-flow fact (C,T) ∈ C × 2T to holds at statement n, then C is the constraint under which
statement n is reachable. We seed the data-flow propagation with the fact BI = (TRUE,∅) at
each entry point method of the application. The constraint is TRUE, as the entry point method
is always reachable. At the entry point, the set T is the empty set as no constraint-API call has
been encountered.

In general, T is the set of symbolic taints generated at constraint-APIs reaching statement
n. Each symbolic taint is a triple (a, c, v) ∈ T and consists of an access path (a local variable
followed by a finite sequence of fields [Deu94]). The access path a encodes how the value of the
constraint-API is heap-referenceable at statement n. The constraint c describes under which
conditions the symbolic taint holds. Value v holds the actual value of a. Dependent of the type
of value v there are three kinds of symbolic taints:

• source taints: v is the value reading from a constraint-API, it is represented symbolically,
e. g., (t, CLICK, TELEPHONY) in Figure 4.1

• imprecise taints: they are derived from existing taints. v is not exactly the value reading
from a constraint-API, but somehow depended on it. For example, Consider a statement
b = a + c and a source taint (a,C,A) propagated to this statement. COVA creates an
imprecise taint (b,C, im(A)), meaning the value of b is somehow affected by A.

• concrete taints: Constraint taints are generated by COVA to track concrete values of
primitive types if they are depended on values from constraint-API. In such cases, v simply
holds the concrete value. For example, (ret, SDK ≤ 26, true) in Figure 4.1 is a concrete
taint.

We will introduce more about the creation of these taints in Section 4.3.3. Note, at a statement
n the constraint c of a taint within the set T and the constraint C are not necessarily equal.
For example, in Figure 4.1 the constraint C to reach line 6 is TRUE, but the constraint c of
the taint (z, SDK ≤ 26, true) is SDK ≤ 26.

The meet operator ⊔ is the logical disjunction ∨ for the constraint domain and set union ∪
for the taint domain, i.e., (C1, T1)⊔ (C2, T2) = (C1 ∨C2, T1 ∪T2) for two data-flow facts (C1, T1)
and (C2, T2). For any (C,T), we define (C,T) ⊔ � = (C,T). In the following we separate the
flow functions into two parts: the flow functions of the taint domain and of the constraint
domain. Let ⟨n, s⟩ be a control-flow edge and let (Cin, Tin) refer to the data-flow fact before n
and (Cout, Tout) denote the fact before m, then we describe the flow function F in form of the
result set (Cout, Tout) = F (Cin, Tin). The analysis operates Jimple, which is a three-addressed
code reconstructed from Java bytecode in Soot [LBLH11b]. We define the analysis based on the
statements affecting either C or T of a data-flow fact (C,T). In the following, we will introduce
the flow functions of the taint domain and constraint domain separately.

4.3.3 Flow Functions of the Taint Domain

The flow functions of the taint domain mostly follow standard k-limiting access-path based taint
tracking data-flow propagation [ARF+14, SDAB16]. An access path x.∗ is a base variable fol-
lowed by a finite sequence of field accesses, e. g., x, x.f , x.f.g. COVA uses Boomerang [SDAB16]
to compute the set of aliases for any access path to support strong updates. We use Aliases(x.∗)
to denote this on-demand alias analysis in Boomerang that returns all aliases of an access path
x.∗ (including x.∗).

85

4.3 The Inter-procedural Constraint Analysis in COVA

NormalFlowFunc(X,n, s, in): Consider a CFG edge ⟨n, s⟩ and an incoming data-flow fact
in = (Cin, Tin), this flow function consider the following cases to compute the taint set Tout of
the outgoing data-flow fact out = (Cout, Tout):

• n ∶ x = ● (Any Assignment): The symbol ● is a placeholder representing an irrelevant
argument. The flow function kills any tainted access path starting with local variable x or
its aliases, i. e.,

Tout = Tin ∖ {(a.∗, ●, ●) ∈ Tin∣a ∈ Aliases(x)}

In the following, let T−in = Tin ∖ {(a.∗, ●, ●) ∈ Tin∣a ∈ Aliases(x)}.

• n ∶ x = y (Local Assignment): if any incoming access path matches variable y at the right
side, x and its aliases are added to the outgoing taint set. If there is a taint (y, c, v) ∈ Tin,
then

Tout = T−in ∪ {(a, c, v)∣a ∈ Aliases(x)}

• n ∶ x = z (Constant Assignment): if z is a constant value and the constraint Cin is not
equal to TRUE, then the flow function creates a concrete taint (x,Cin, z) and

Tout = T −in ∪ {(x,Cin, z)}.

• n ∶ x.f = y (Non-static Field Store): if any incoming access path matches the variable y
at the right side, then the left side and its aliases are added to the outing taint set. If
there is a taint (y, c, v) ∈ Tin, then

Tout = Tin ∖ {(a.f, ●, ●)∣a ∈ Aliases(x)} ∪ {(a.f, c, v)∣a ∈ Aliases(x)}

• n ∶ x = S.f (Static Field Load): if the right side is a static field and this field is labeled
as a constraint-API, the flow function generates a source taint (x,Cin, sym(S.f)) and

Tout = T−in ∪ {(x,Cin, sym(S.f))}

Hereby Cin is the constraint that reaches statement n and sym is a function that generates
a unique symbolic value for a given constraint-API. For instance, (sdk, TRUE, SDK) is a
source taint created at line 19 in Figure 4.1.

• n ∶ S.f = y (Static Field Store): if any incoming access path matches the variable y at
the right side, then the left side and it aliases are added to the outing taint set. If there
is a taint (y, c, v) ∈ Tin, then

Tout = Tin ∖ {(a, ●, ●)∣a ∈ Aliases(S.f)} ∪ {(a, c, v)∣a ∈ Aliases(S.f)}

• n ∶ x = y ⊕ z (Binary Operation): ⊕ is a binary operator. If at least one variable at the
right side is tainted, then the flow function creates an imprecise taint. If (y, ●, v1) ∈ Tin

and (z, ●, v2) ∈ Tin, then

Tout = T−in ∪ {(x,Cin, im(v1, v2)}.

The symbolic value im(v1, v2) means the value of x is affected by v1 and v2. In case the
taint of one variable is missing, for example, (y, ●, v1) ∈ Tin and (z, ●, ●) ∉ Tin, the flow
function creates an imprecise taint (x,Cin, im(v1)).

86

Chapter 4. Towards Path-Sensitive Analysis with COVA

• n ∶ x = ⊖y (Unary Operation): ⊖ the flow function is analog to the binary operation case
and creates an imprecise taint.

• n ∶ return z (Return Statement): if z is constant and constraint Cin is not equal to
TRUE, then the flow function creates a concrete taint (ret,Cin, z) and

Tout = T−in ∪ {(ret,Cin, z)}

Here we use a synthetic access path ret to symbolically represent the returned variable
(e.g., (ret,SDK ≤ 26, true) at line 23 in Figure 4.1).

CallLocalFlowFunc(X,n, s, in): Consider a CFG edge ⟨n, s⟩ in which n ∶ r = o.f(a1, ..., ak)
is a call statement. in = (Cin, Tin) is the incoming data-flow fact. Apart from killing taints that
start with the overwritten variable r and its aliases, the following cases are considered:

• If f is a constraint-API, then the flow function adds a source taint (r,Cin, sym(f)) to the
outgoing taint set:

Tout = Tin ∖ {(a.∗, ●, ●)∣a ∈ Aliases(r)} ∪ {(r,Cin, sym(f))}

• If there is a taint (o, ●, v) ∈ Tin, then the flow function creates an imprecise taint (r,Cin, im(v)):

Tout = Tin ∖ {(a.∗, ●, ●)∣a ∈ Aliases(r)} ∪ {(r,Cin, im(v))}

Note that if f is a method from the java.lang.String class, the current COVA can
handle some string operations (e. g., equals, length, contains, startsWith, endsWith).
Hauptmeier extended COVA to support handle string operations more precisely in his
master thesis [Hau21]. Instead of an imprecise taint, a string taint is created in this
extension.

CallEntryFlowFunc(X,m,n, s, in): Consider a call statement n ∶ o.f(a1, ..., ak) or
n ∶ r = o.f(a1, ..., ak) , the callee m ∶ O.f(p1, ..., pk) of n, and the incoming data-flow fact in =
(Cin, Tin), the following cases are considered:

• Any taint in Tin, whose access path’s local variable is an argument of the call (a1, ..., ak),
is mapped to the respective parameter access path within the callee m.
Let T1 = {(pi.∗, c, v)∣(a1.∗, c, v) ∈ Tin}.

• If there exists ai being constant and Cin is not TRUE, the flow function creates a concrete
taint (pi,Cin, ai) for the respective parameter pi within the callee.
Let T2 = {(pi,Cin, ai)∣ai is constant.}.

• If O.f is a non-static method, then the receiver variable o is mapped to the this-reference
inside the callee.
Let T3 = {(this.∗, c, v)∣(o.∗, c, v) ∈ Tin}.

• Access paths S.∗ representing static data-flow facts, i.e., public static fields, are mapped
to the callee, as the callee may change their values.
Let T4 = {(S.∗, c, v)∣(S.∗, c, v) ∈ Tin}.

In summary, the outgoing taint set holds at the callee is

Tout = T1 ∪ T2 ∪ T3 ∪ T4

87

4.3 The Inter-procedural Constraint Analysis in COVA

CallExitFlowFunc(X,m,n, s, in): Consider a call statement n ∶ o.f(a1, ..., ak) or
n ∶ r = o.f(a1, ..., ak) , the callee m ∶ O.f(p1, ..., pk) of n, and the incoming data-flow fact in =
(Cin, Tin), the following cases are considered:

• The flow functions maps any taint from callee back to caller inversely as in CallEn-
tryFlowFunc. In addition to that, aliases at the call site are also considered.
Let T1 = {(a.∗, c, v)∣(pi.∗, c, v) ∈ Tin ∧ a ∈ Aliases(ai)}.

• All taints with access path starting with the this-reference is mapped to o and its aliases
at the call site.
Let T2 = {(a.∗, c, v)∣(this.∗, c, v) ∈ Tin ∧ a ∈ Aliases(o)}

• Taints (S.∗, c, v) representing public static fields are mapped back to the call site.
Let T3 = {(S.∗, c, v)∣(S.∗, c, v) ∈ Tin}.

• If the call site is an assignment n ∶ r = o.f(a1, ..., ak) , all taints with ret being its access
path will be propagated back to the call site.
Let T4 = {(r, c, v)∣(ret, c, v) ∈ Tin},

In summary, the outgoing taint set is

Tout = T1 ∪ T2 ∪ T3 ∪ T4

4.3.4 Flow Functions of the Constraint Domain

To compute path constraint Cout based on a given statement n and a path constraint Cin and a
taint set Tin which hold before n, COVA conjoins Cin with an extending constraint Cnew which
is created at conditional statements or invocation of UI callbacks, i.e., Cout = Cin ∧Cnew. In the
following we focus on introducing how Cnew is computed.

NormalFlowFunc(X,n, s, in): Consider a statement n ∶ if (a⊕ b) with a comparison op-
erator ⊕, COVA creates Cnew based on the available taints in Tin. The following cases are
considered:

• Tin contains only taints for variable a (analog for b). Assume there are k taints (a, ci, vi) ∈
Tin with i ∈ {1, ..., k}.

1. If b is a constant value, COVA creates a constraint ei by substituting the variable a
in the formula a⊕ b with its value vi and conjoining the result with ci for each taint
(a, ci, vi), i.e., ei ≡ (vi ⊕ b) ∧ ci if the successor statement m is in the TRUE branch
of n. For the case m is in the FALSE branch ei ≡ ¬(vi ⊕ b) ∧ ci.

2. If b is an untracked variable, the formula vi⊕b is replaced by the imprecise constraint
im(vi) in ei, namely: ei ≡ (im(vi)⊕ b)∧ ci for the TRUE branch and ei ≡ (¬im(vi)⊕
b) ∧ ci for the FALSE branch.

Cnew is computed as follows :

Cnew ≡ (⋁k
i=1 ei) ∨ cmiss, where ⋁k

i=1 ci ∨ cmiss ≡ Cin.

Intuitively, if COVA would track all variables in the program, we should know the value
of a in all constraints under which this statement if (a ⊕ b) is reachable. So the taints
(a, ci, vi) ∈ Tin must share the following invariant ⋁k

i=1 ci ≡ Cin. We call such taint set

88

Chapter 4. Towards Path-Sensitive Analysis with COVA

1. if (a=0)

(X,{(a, X ∧ Y, A), (a, X ∧ ¬Y, 1)})

2. b=doThis()

(A = 0 ∧X ∧ Y ,{(a, A = 0 ∧X ∧ Y, A)})

3. b=doThat()

(A ≠ 0 ∧X,{(a, A ≠ 0 ∧X ∧ Y, A), (a, X ∧ ¬Y, 1)})

4. doSth(b)
(X,{(a, X ∧ Y, A), (a, X ∧ ¬Y, 1)})⊔

FALSETRUE

Figure 4.2: An example shows complete taint sets.

complete regarding the variable a. Figure 4.2 illustrates such a case. The path constraints
are highlighted in red. Before the if -statement at line 1, the path constraint Cin is X and
the taint sets contains two taints t1 ∶= (a,X ∧Y,A) and t2 ∶= (a,X ∧¬Y,1). The taint set is
complete for variable a, since the invariant holds: ⋁2

i=1 ci ≡ (X ∧Y)∨ (X ∧¬Y) ≡X ≡ Cin.
In such case, a can not be any other value, rather than A or 1. So cmiss is simply FALSE.
The path constraint Cout for taking the TRUE branch is computed as follows:

Cout ≡ Cin ∧Cnew

≡ Cin ∧ (e1 ∨ e2) ∨ cmiss

≡ Cin ∧ (e1 ∨ e2) ∨ FASLE
≡ Cin ∧ (A = 0 ∧X ∧ Y) ∨ (1 = 0 ∧X ∧ ¬Y) ∨ FALSE
≡ Cin ∧ (A = 0 ∧X ∧ Y) ∨ FALSE ∨ FALSE
≡X ∧ (A = 0 ∧X ∧ Y)
≡ A = 0 ∧X ∧ Y

The constraint of each taint will also be updated with the respective ei. In the following,
we denote the updated taints with t′1 and t′2:

t′1 = (a, e1,A) = (a,A = 0 ∧X ∧ Y,A)
t′2 = (a, e2,1) = (a,FALSE,1)

COVA only propagates taints whose constraints are satisfiable, i. e., they are not equal to
FALSE. Thus, t′2 won’t be propagated to the TRUE branch. The computation regarding
the FALSE branch is analog. When merging taint sets from both the TRUE branch
and FALSE branch at line 4, taints with the same value are merged to one, i. e., (a,A =
0 ∧X ∧ Y,A) and (a,A ≠ 0 ∧X ∧ Y,A) becomes (a,X ∧ Y,A).
In practice, we usually have an incomplete taint set Tin, which the invariant is violated.
It means we only know the value of a under some constraint, but not for other constraints
that can also drive the execution to the if -statement. Figure 4.3 illustrates such a case.
The taint set before the statement if(a<0) indicates a to hold the value 1 under the
constraint X. Before evaluating the statement if(a<0), the constraint Cin ≡ TRUE,
which means the statement is always reachable. The taint set for a is incomplete, because
COVA cannot propagate a taint for a under the constraint ¬X as a holds an unknown

89

4.3 The Inter-procedural Constraint Analysis in COVA

1. int a = obj.randomValue();

(TRUE,∅)

2. boolean x = getOptionX()

(TRUE,∅)

3. if (x)

(TRUE,{(x,TRUE, X)})

4. a = 1
(X,{(x, X, X)})

(¬X,{(x,¬X, X)})

5. if (a<0)

(X,{(x, X, X), (a, X, 1)})
⊔

(TRUE,{(x,¬X, X), (x, X, X), (a, X, 1)})

(¬X,{(x,¬X, X)})

6. print(secret)

TRUEFALSE

TRUE Incomplete taint set Tin

Figure 4.3: An example shows an incomplete taint set. Assume getOptionX() is a constrain-API
whose return value is represented by the symbolic value X.

return value of the method call obj.randomValue(). For variable a, cmiss is ¬X and the
Cout for the TRUE branch is:

Cout ≡ Cin ∧Cnew

≡ Cin ∧ (e1 ∨ cmiss)
≡ Cin ∧ (e1 ∨ ¬X)
≡ Cin ∧ ((1 < 0 ∧X) ∨ ¬X)
≡ Cin ∧ ¬X
≡ TRUE ∧ ¬X
≡ ¬X

• Tin contains taints for both a and b.
Assume there are k taints (a, ci, vi) ∈ Tin and q taints (b, dj ,wj) ∈ Tin. COVA computes
eij by substituting a and b analogously as in the previous case. eij = (vi ⊕wj) ∧ ci ∧ dj for
the TRUE branch and eij = ¬(vi⊕wj)∧ ci∧dj for the FALSE branch. Let cmiss and dmiss

be the missing-constraints for variable a and b respectively, Cnew = (⋁ij eij)∨cmiss∨dmiss.

For a switch-statement, the flow function is analog.

CallEntryFlowFunc(X,m,n, s, in): For a call n ∶ o.f(a1, ..., ak) , Cout = Cin ∧ sym(f) if f
is a callback from the constraint-APIs. sym is a function of COVA returns a symbolic value for
f indicating f is invoked.

CallLocalFlowFunc(X,n, s, in): This function is the same as CallEntryFlowFunc.

CallExitFlowFunc(X,m,n, s, in): The constraint stays unchanged.

90

Chapter 4. Towards Path-Sensitive Analysis with COVA

4.3.5 Termination

The termination of VASCO is guaranteed by the monotonicity of the flow functions and the
finiteness of the lattice of data-flow facts. The flow functions are monotonic, since a variable
can either be killed or stay tainted. The on-demand alias analysis queried in the flows functions
will always terminate though a timeout we set up for Boomerang. The path constraints are
computed based on the taint set and the evaluated statement. The lattice of the taint domain is
finite, because we can only extract a finite number of k-limited access paths from the program.
Once the taint set achieves the fixed-point, the path constraint will also achieve the fixed-point,
since its computation is based on the taint set. VASCO terminates once a fixed point is reached.
The result computed by VASCO is a map from (ctx, n) ∈ Context×Statement to data-flow facts
in C × 2T. The Cin values before each statement are used to extract the constraint map. Since
a statement n can be in multiple contexts, COVA merges the Cin values of n from different
contexts by logical disjunction.

4.4 Implementation

Soot Z3

ConstraintAnalysisAliasing

RuleManager
SymbolicNameManager

FlowDroid
SMTSolverZ3

SourceManager
VASCO

ConstraintReporter

Figure 4.4: COVA’s main components.

We implemented COVA that computes partial path constraints for Java and Android appli-
cations based on predefined constraint-APIs. The constraint-APIs are given in configuration
files. Figure 4.4 shows the main components in COVA. The core part of COVA computing
path constraints is the ConstraintAnalysis that is built on top of both Soot [LBLH11b] and
Z3 [dMB08]. Z3 is a widely used theorem prover from Microsoft Research. COVA relies on
it to evaluate whether a constraint is satisfiable and only propagates taints with satisfiable
constraints.

The class ConstraintAnalysis extends the ForwardInterProceduralAnalysis in VASCO
to perform a forward interprocedural constraint analysis as we introduced in Section 4.3. The
class SMTSolverZ3 transforms constraints in COVA’s internal representation to constraints in
Z3. The current implementation of COVA fully support constraints in boolean propositional
logic, equality logic and linear arithmetic logic. It partially supports string operations, intro-
duced in [Hau21]. The class RuleManager is responsible for managing a list of rules applied
in the flow functions introduced in Section 4.3. Each rule implements an interface IRule as
shown in Figure 4.5. The class UIConstraintCreationRule is responsible to generate con-
straints at invocations of UI callbacks. While the class TaintProgagationRule is the im-
plementation of all flow functions for the taint domain introduced in Section 4.3.3, the class
TaintConstraintCreationRule implements flow functions for the constraint domain introduced

91

4.5 Evaluation of COVA

in Section 4.3.4.
To reason about aliasing relationship, the Aliasing class in Figure 4.4 uses Boomerang [SDAB16],

which is a demand-driven flow- and context-sensitive pointer analysis. For Java applications,
the call graphs are constructed by Soot. For Android applications, we use the call graphs con-
structed by FlowDroid [ARF+14]. The SourceManager is responsible for determining whether
a statement contains a constraint-API. The SymbolicNameManager assigns variable to unique
symbolic expression and manages the mapping from a symbolic expression to a constraint-API.
The ConstraintReporter manages the output of COVA. It provides interfaces to query path
constraint for a single statement, output path constraint for every reachable statement in the
analysis as annotation in Jimple files, etc.

Figure 4.5: The class diagram around constraint analysis.

4.5 Evaluation of COVA

To be able to judge the confidence in the results COVA reports, we developed a micro benchmark
suite called ConstraintBench. ConstraintBench consists of 100 specially crafted test
programs with labeled ground truth. It covers test cases in which primitives or heap objects used
in conditional statements, nested conditional statements, intra- and inter-procedural conditional
dependencies, callback invocations, indirect conditional dependencies, string operations, etc.
Originally, as we published our work in [LBS19], COVA did not evaluate string operations. As
we introduced in Section 4.3.2, COVA propagates imprecise taints that are derived from source
taints, so it could produce imprecise path constraints that are less expressive than one would
expect. Listing 4.2 shows such a test case. Let FA symbolically represents the value read from

1 public void test() {
2 String a = Configuration.fieldA; // constraint−API
3 if (a.equals("abc")) {
4 System.out.println();// FA = "abc"
5 }
6 }

Listing 4.2: Test case String1 from ConstraintBench.

92

Chapter 4. Towards Path-Sensitive Analysis with COVA

1 public void test() {
2 int d = Configuration.featureD(); // constraint−API
3 int f = Configuration.featureF(); // constraint−API
4 int[] arr = new int[2];
5 arr[0] = d;
6 arr[1] = f;
7 if (arr[0] > 0) {
8 System.out.println();// (D>0)
9 }

10 }

Listing 4.3: Test case Array1 from ConstraintBench.

Configuration.fieldA. A path constraint that precisely expresses how line 4 is reachable at
runtime could be FA = “abc”. The path constraint COVA computed was im(FA), which only
tells that the execution of statement at line 5 is depended on FA. Hauptmeier extended COVA
to support some simple string operations in his master thesis [Hau21]. Thus, the path constraint
computed by the current COVA is as precise as the expected FA = “abc”.

Because COVA computes path constraints, the labeled ground truth for a test program is
a mapping from a statement to a symbolic formula that expresses the path constraint on the
symbolic values over constraint-APIs configured for COVA. If the computed path constraint for
a test program is equivalent to the specified path constraint, it is considered as a true positive
(TP) case, otherwise, a false positive (FP) case. If no path constraint is computed (i. e., �), it
is considered as false negative.

Table 4.1 shows the results of the current COVA evaluated on ConstraintBench. On

Table 4.1: Evaluation results of COVA on ConstraintBench.

No. Test Category No. of Tests TP FP
1 PrimTypes 19 19 0
2 NonPrimTypes 3 3 0
3 InstanceField 10 10 0
4 StaticField 7 6 1
5 Callbacks 2 2 0
6 Indirect 4 4 0
7 Infeasible 2 2 0
8 InterProcedural 10 9 1
9 Loops 5 5 0
10 Recursion 1 1 0
11 SwitchStmts 2 2 0
12 TryBlock 1 1 0
13 Mixed 2 2 0
14 Imprecise 19 11 8
15 Array 1 0 1
16 Reflection 1 0 1
17 Special Classes 3 0 3
18 StringOperation 8 7 1

∑ 100 85 15

93

4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis Results

this suite, COVA achieves a precision of 85% (85/100) and a recall of 85% (85/100). Because
the test programs in ConstraintBench are small, COVA computes a constraint map for each
of them. There is no statement where COVA does not compute a path constraint. However,
false negatives can happen in real-world applications, if the call graph COVA operates on
is incomplete. 15 cases are false positives. Most false positives are imprecise path constraints,
where imprecision is introduced because of library methods that can not be evaluated by COVA.
Other false positives cases are due to unhandled language features such as array, reflection, etc.
As the example in Listing 4.3 shows, the expected path constraint for the statement at line 8
is D>0. The path constraint COVA computes for line 8 is TRUE, because array access is not
handled.

4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis
Results

Using COVA, we conducted an experiment to understand the nature of taint flows detected by a
static Android taint-analysis tool in real-world applications, and potential avenues to eliminating
false positives among those taint flows. Figure 4.6 describes the workflow of COVA when used
with a taint-analysis tool. COVA accepts as input an Android application in bytecode format
and a set of pre-defined constraint-APIs. COVA then computes the path constraints, i.e.,
the constraint map, which depend on values from the constraint-APIs. The constraint map
computed by COVA is used to refine the data leaks reported by an existing taint-analysis
tool, i.e., leaks can be reported with path constraints. We chose FlowDroid [ARF+14] as our
evaluation tool, since it is well maintained and, according to previous studies [QWR18, PBW18],
beats other tools both in accuracy and efficiency. Although we applied COVA to a taint analysis,
COVA is applicable to any other client analysis that can benefit from path information. The
experiment intends to answer the following research questions:

• RQ1. What types of taint flows does FlowDroid report? How common is each type?

• RQ2. How large is the fraction of easily actionable unconditional intra-procedural taint
flows, and what characteristics do these flows have?

We next address both questions one after the other.

RQ1. What types of taint flows does FlowDroid report? How common is each
type?

Methodology

We randomly sampled 2,000 Android apps from the AndroZoo dataset [ABKT16]. All sampled
apps were available in popular app stores (Google Play and Anzhi Market) between year 2016
and 2018. These criteria ensure that we report on the real-world apps from recent years. The
apps can be downloaded from this link1. We used FlowDroid v2.5.1 in its default configuration.
In this configuration, FlowDroid lists 47 methods as sources2 and 122 as sinks. We applied
FlowDroid to these 2,000 apps and it reported 1,022 apps to contain data leaks. FlowDroid
reported 28,176 taint flows for these 1,022 apps, which makes it intractable to study every single
taint flow in every app. Thus, our methodology follows these two steps:

1https://www.kaggle.com/covaanalyst1/cova-dataset
246 sources are listed in the configuration file SourcesAndSinks.txt and 1 source an-

droid.app.Activity.findViewById(int) is treated specially by only considering password input fields.

94

https://www.kaggle.com/covaanalyst1/cova-dataset

Chapter 4. Towards Path-Sensitive Analysis with COVA

Constraint
Map

Pre-defined
Constraint-APIs

Pre-defined
Constraint-APIs

COVA

Data
Leaks

Taint-Analysis Tool

Constrained
Leaks

Bytecode

Figure 4.6: The workflow of applying COVA to taint-analysis results.

Step 1: We measured which source-sink-pairs appeared in the taint flows and chose the top 3
source-sink-pairs among intra- and inter-procedural taint flows (see Table 4.2) for our case study,
since these source-sink-pairs dominate a large amount of taint flows, and among most (88%) of
the remaining pairs each pair only appeared in fewer than 50 taint flows (out of 28,176 in total).
To determine apps for our case study, we applied stratified random sampling: the apps with
taint flows using these 6 source-sink-pairs are divided into 6 groups, one for each pair, which we
here label with A to F. Due to large amount of reverse engineering and manual work involved
in the inspection, we only sampled 10% of the apps of each group. The manual inspection was
done in pair by two of the authors. This step allowed us to get an impression on the most
common taint flows FlowDroid reports and potentially identify false-positive patterns that
can be used to filter false positives before we classified the taint flows with the path constraints
COVA computes in the next step.

Table 4.2: Stratified sampling the top source-sink-pairs among the taint flows.

Gr. Source Sink #Taint Flows #Apps #Sampled Apps
Intra-procedural

A java.net.URL.openConnection java.net.HttpURLConnection.setRequestProperty 2,193 535 54
B android.os.Handler.obtainMessage android.os.Handler.sendMessage 1,410 199 20
C java.net.HttpURLConnection.getOutputStream java.io.OutputStream.write 194 166 17

Inter-procedural
D android.database.Cursor.getString android.app.Activity.startActivityForResult 1,440 156 16
E java.net.URL.openConnection java.net.HttpURLConnection.setRequestProperty 862 291 30
F android.database.Cursor.getString android.os.Bundle.putString 847 85 9

Step 2: We conducted an experiment in which we applied both FlowDroid and COVA to
the apps in our dataset. An app is passed to both FlowDroid and COVA (see Figure 4.6).
The experiment was designed to classify the taint flows with the following types:

• UI-constrained taint flows are dependent on UI actions.

• Configuration-constrained taint flows are dependent on hardware/software configuration.

• I/O-constrained taint flows are dependent on data inputs through streams or file system.

Whenever a taint flow is reported by FlowDroid, we conjoin the constraints of the source
and the sink computed by COVA to obtain the leak-constraint and use it to classify this
taint flow. For instance, the leak in our motivating example (see Figure 4.1) will be classi-
fied to both UI-constrained and Configuration-constrained, since the leak-constraint SDK ≤
26 ∧ CLICK ∧ TELEPHONY contains symbolic values which stand for configuration (SDK

95

4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis Results

and TELEPHONY) and UI action (CLICK) at the same time. This classification also works
for imprecise path constraints (e. g., im(SDK) means some unmodeled operation over SDK.)
COVA computes, since they still contain the symbolic values stand for the relevant constraint-
APIs. We collected a list of constraint-APIs from the Android Platform (API level 27) that
COVA ought to track:

• 335 APIs for UI actions, which are UI callbacks. We first scanned the whole Android
platform with gestural keywords such as click, scroll, etc., to extract a list of possible UI
callbacks. Based on this list, callbacks were manually selected.

• 448 APIs for hardware and software configuration. We collected the APIs based on the
official Android guide of device compatibility [Goo18a].

• 120 APIs for data input via I/O streams or file system, which are mainly from the java.io
package.

The selection of the APIs was done by pair-reviewing by two researchers. The list is publicly
available with COVA.

Experiment Setup: We set a timeout of 30 minutes per app for COVA. COVA terminated
its analysis and computed a complete constraint map for 315 apps. (In cases in which analysis
times out, this was most often due to slow constraint solving in Z3, see Section 4.8.) For
the remaining 707 apps, COVA only computed partial constraint maps. The experiment was
conducted on a virtual machine with an Intel Xeon CPU running on Debian GNU/Linux 9 with
Oracle’s Java Runtime version 1.8 (64 bit). The maximal heap size of the JVM was set to 24 GB.

Results

Figure 4.7 shows the different types of taint flows and their fractions in our study. While
the false positives were all identified in step 1, the fractions of other types (UI-constrained,
Configuration-constrained, I/O-constrained, Infeasible, Unconstrained and intersections) were
computed in step 2. The infeasible taint flows are those with unsatisfiable leak-constraints
reported by COVA. The fraction of the unconstrained taint flows is only an upper bound. For
apps on which COVA timed out, if there is no constraint computed for the source and sink
statements of a taint flow in the partial constraint map, we assigned this taint flow with the
type “Unconstrained”. In step 1, we studied the most common taint flows while keeping the
following questions in mind: Is this taint flow feasible, i.e., could it be a leak? Do some code
patterns with the same source-sink-pair exist in the taint flows? To assess the feasibility, we
used the data-flow path (in Jimple) between source and sink of each taint flow reported by
FlowDroid and the decompiled code of the apps.

Intra-procedural taint flows, Groups A-C: As shown in Table 4.2, the source-sink-pair
(URL.openConnection, HttpURLConnection.setRequestProperty) appeared most frequently
in both intra- and inter-procedural taint flows (group A and E). While the given source method
creates a connection object with a given URL, the sink sets the general properties of a HTTP
request. This source-sink-pair combination apparently does not constitute a leak, since the
connection is not even opened when only calling URL.openConnection. One instead still has to
call URLConnection.connect or equivalent methods (e.g., URLConnection.getInputStream) to
initiate the communication [FYD+06]. During the inspection for the above-mentioned source-
sink-pair in group A, we discovered that the reported taint flows share some common patterns.

96

Chapter 4. Towards Path-Sensitive Analysis with COVA

UI-constrained

Configuration-constrained I/O-constrained

Infeasible
False positives

Unconstrained

9.3%

2.7% 0.6%

0.7%

31%

54.8%

0.04%

0.7% 0.1%

0.004%

Figure 4.7: Different types of the taint flows.

/*** code pattern 1 ***/
HttpURLConnection c = (HttpURLConnection) new URL("http...").openConnection(); //source
c.setDoInput(true);
c.setRequestProperty("User-Agent", "Mozilla/5.0"); //sink, no leak

/*** code pattern 2 ***/
Message m = handler.obtainMessage(); //source
handler.sendMessage(m); //sink , no leak

/*** code pattern 3 ***/
HttpURLConnection c = (HttpURLConnection) new URL("http...").openConnection();
c.setDoOutput(true);
OutputStream s = c.getOutputStream(); //source
s.write(data); //sink, no leak

Listing 4.4: False-positive code patterns from group A, B, C.

Code pattern 1 in Listing 4.4 shows an example usage of this source-sink-pair, which is a common
way to set up the header of a HTTP request. This is no leak.

Code pattern 2 in Listing 4.4 is another common false-positive pattern we identified in group
B. The factory method Handler.obtainMessage is regarded as a source by FlowDroid. This
method creates a new empty message instance. It does not poll a message from the message
queue of the Android handler. This method should thus be excluded from the list of sources.
Code pattern 3 from group C is a similar case.

In summary, taint flows which fall into these code patterns are false positives. To determine
how many taint flows match these code patterns, we extended FlowDroid to detect these
patterns, and re-analyzed the apps in groups A, B and C. In the end, 2,630 (46%) reported
intra-procedural taint flows matched these three code patterns. As shown in these code patterns,
the root cause of these false positives is that their sources, which FlowDroid uses in its default
configuration, are actually inappropriate, i.e., they do not return sensitive data.

Such a big fraction of false positives caused by this reason cannot be ignored. Thus, we
examined all 47 sources by reading the Javadoc carefully together with a software developer with
more than 5 years experience in Java. Altogether, we identified 11 APIs that were mistakenly

97

4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis Results

made source/sink (see Table 4.3). These inappropriate sources and sinks resulted in 7,767
reported taint flows, which is 28% of all reported taint flows (intra- and inter-procedural).

About a quarter (11/47) of default sources provided by FlowDroid are inappropriate and
cause more than a quarter (28%) of all reported taint flows being false positives.

Table 4.3: Inappropriate sources and sinks used by FlowDroid.

Signature
android.os.Handler.obtainMessage()
android.os.Handler.obtainMessage(int,int,int)
android.os.Handler.obtainMessage(int,int,int,Object)
android.os.Handler.obtainMessage(int)
android.os.Handler.obtainMessage(int,Object)
android.app.PendingIntent.getActivity(Context,int,Intent,int)
android.app.PendingIntent.getActivity(Context,int,Intent,int,Bundle)
android.app.PendingIntent.getBroadcast(Context,int,Intent,int)
android.app.PendingIntent.getService(Context,int,Intent,int)
java.net.URLConnection.getOutputStream()
java.net.URL.openConnection() *[regarded as both source and sink]

After a discussion with FlowDroid’s maintainers, they confirmed the mistake and removed
the inappropriate sources and sinks from the default list in FlowDroid’s GitHub repository.3
This affects the pairs A, B, C and E in Table 4.2.

Inter-procedural taint flows, Groups D-F: Because the source of group E is inappropriate,
the manual inspection of this group was unnecessary. We next describe the results of the manual
inspection of the remaining groups D and F. The taint flows from group D use the source-sink-
pair (Cursor.getString, Activity.startActivityForResult). Taint flows with this source-
sink-pair could be part of a leak when the intent passed to Activity.startActivityForResult
contains data reading from Cusor.getString and the second activity passes this received data
to an untrusted sink. Since taint flows using such inter-component communication are outside
the scope of FlowDroid, our goal for inspection was only to check if this partial data-flow is
feasible. Surprisingly, 88% of the taint flows from Group D proved to be false positives. All these
false positives share a similar code pattern, shown in Listing 4.5. In this example, FlowDroid
taints this.secret and reports a leak when the sink method is called on the base object of the
taint this.secret, which is the this object. However, there is no tainted data that flows into
the intent passed for the sink method. Such over-approximation in FlowDroid’s analysis logic,
while sometimes useful, is too approximative for the sink Activity.startActivityForResult.

Generally, taint flows with taints connecting sources and sinks on the same objects should
be filtered. Thus, we extended FlowDroid with a static analysis that detects such cases and
re-analyzed the relevant apps. 330 taint flows matched the false-positive pattern in Listing 4.5.
In total, we identified 978 taint flows with taints connecting sources and sinks on the same
objects. The sinks appearing in these taint flows are mainly APIs used for inter-component
communication. The remaining sinks (e.g. HttpResponse.execute(HttpUriRequest)) only
make sense when the right parameter was tainted. However, FlowDroid reported these taint
flows when the base object was tainted.

3The link to the commit: https://github.com/secure-software-engineering/FlowDroid/commit/
211b73e32a0ade1ded021f2fc30b0aa647be5862

98

https://github.com/secure-software-engineering/FlowDroid/commit/211b73e32a0ade1ded021f2fc30b0aa647be5862
https://github.com/secure-software-engineering/FlowDroid/commit/211b73e32a0ade1ded021f2fc30b0aa647be5862

Chapter 4. Towards Path-Sensitive Analysis with COVA

public class MainActivity extends Activity {
private String secret;
public void caller(){

this.secret = cursor.getString(i); //source
callee();

}
public void callee() {

Intent i = new Intent();
this.startActivityForResult(i, ...); //sink, no leak

}}

Listing 4.5: False-positive code pattern from group D.

In our study, all taint flows reported by FlowDroid with taints connecting sources and sinks
on the same objects are false positives.

The sink Bundle.putString used in taint flows from group F is also an API for inter-
component communication. Similar to group D, we checked if the reported partial flow is
feasible. We found out that while 89% of the reported flows are feasible, the false positives all
happened in one app and the flows were just for putting the name of the app into the sink.
However, the fact that the partial flows are feasible does not mean they are a part of true leaks,
since one does not know how the sensitive data stored in Bundle were used in other activities,
which was not reported by FlowDroid. In total, we identified that at least one third (31%) of
taint flows reported by FlowDroid in the default configuration are false positives.

In step 2, we classified taint flows that are dependent on the constraint-APIs with COVA.
For instance, if the leak-constraint contains symbolic values that relate to the constraint-APIs
from UI callbacks, then this taint flow belongs to category “UI-constrained”. Certainly, there
can be taint flows which belong to multiple categories. Note that we excluded the false positives
we identified in step 1 for the classification.

As the Venn diagram in Figure 4.7 shows, among the 14.2% taint flows whose occurrences are
dependent on the constraint-APIs in the categories, the majority are in a single category – UI-
constrained, which means they only occur when some specific UI actions are performed. 2.7% of
the taint flows may happen under certain environment configurations, and 0.6% are dependent
on inputs from I/O operations. The numbers in the Venn diagram’s intersections of different
categories indicate that interactions between values read from APIs in different categories are
rare but do exist.

Taint flows are seldom conditioned by combinations of UI interactions, environment config-
urations and I/O operations. Most taints could thus be dynamically confirmed by different
tools that specialize on the respective category.

Because complex UI dependencies may require a test harness to drive the application with
the needed sequences of events, we investigated the complexity of the UI actions. Intuitively,
taint flows triggered by a sequence of user actions should exist. A previous study [ZZD+12]
has found malicious applications in which a user needs to click a series of buttons to trigger
the display of a widget which leaks the data. To estimate the complexity, we calculated how
many different UI actions are involved in a UI-constrained taint flow by counting the number of
symbolic values for UI actions used in the leak-constraint. Note that our constraint encoding is
able to distinguish different UI actions.

99

4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis Results

1 2 3 4 5 6 7 8 9 10 110

500

1,000

1,500

2,000

1,475

325

114

318 297

34 42 16 4 4 2

Number of UI actions

N
um

be
r
of

ta
in
t
flo

w
s

Figure 4.8: The distribution of UI-constrained taint flows.

Figure 4.8 shows the distribution of UI-constrained taint flows. 56.1% (1,475) of taint flows
happen after a single UI action. There are only 3.8% of taint flows that may require 6 or more
UI actions. Maximally 11 different actions appeared in a leak-constraint. However, executing
the taint flow does not require all 11 actions at the same time, since there are disjunctions in
the leak-constraint (e.g., A ∨ B contains two actions A and B, but one action is sufficient to
execute the taint flow).

Despite the existence of sophisticated sequences of UI actions, our results indicate the dynamic
exploration of most UI action-related taint flows could be easier than expected.

Among the configuration-constrained taint flows, the distribution is even simpler: the largest
number of taint flows (85.6%) require a single configuration option and 13.9% of them are
dependent on two options. Only 5 taint flows happen under a complex configuration with more
than two options.

The necessary configuration-based conditions for exposing taint flows are easy to be satisfied
in the majority of cases.

Table 4.4: Top Constraint-APIs related to the taint flows.

UI Callback #Flows
android.view.View.OnClickListener.onClick 2,088
android.widget.AdapterView.OnItemClickListener.onItemClick 623
android.content.DialogInterface.OnClickListener.onClick 595
Configuration #Flows
android.os.Build.VERSION.SDK_INT 255
android.content.Context.getSystemService(“connectivity") 246
android.content.Context.getSystemService(“location") 224
I/O Operation #Flows
java.io.InputStream.read 158
java.io.BufferedReader.readLine 16
java.io.ObjectInputStream.readObject 10

Table 4.4 shows which constraint-APIs from our categories are most frequently used. While

100

Chapter 4. Towards Path-Sensitive Analysis with COVA

click events are relevant to most taint flows related to UI actions, the Android SDK version plays
a considerable role in environment configurations. This is not surprising to us, since the Android
operating system remains highly fragmented [Ope15, MSDM16, Goo18b] and developers are
challenged to produce applications that are compatible to multiple platform versions. However,
the importance of taint flows which only occur in obsolete versions of Android may be limited in
practice. Constraints based on I/O operations are mostly checking if the end of a data stream
has been reached, e.g., if(inputStream.read()!=-1).

Additionally, we observed that for 28% of the 208 infeasible taint flows, their source state-
ments were not executable, since the path constraint is FALSE. For 76% of the infeasible taint
flows, their sink statements will never be executed at runtime. Such dead code was probably
intentionally built in by developers [EHMG15], e.g., during sampling, we inspected code used
for logging (sinks of taint flows) that was disabled with a boolean flag for the released APK, but
not removed.

RQ2. How large is the fraction of easily actionable unconditional intra-
procedural taint flows, and what characteristics do these flows have?

Methodology

Taint flows that are intra-procedural and unconstrained, i.e., the leak-constraint computed by
COVA is equal to TRUE, are easy to detect and clearly directly actionable for developers. We
call such flows “low-hanging fruits”. We sought to acquire the characteristics of the “low-hanging
fruits”, and thus again applied stratified random sampling with proportion 10% to the taint flows
with top source-sink-pairs in Table 4.5.

Table 4.5: Top source-sink-pairs among “low-hanging fruits”.

Gr. Source Sink Sampled/Total Flows
X android.database.Cursor.getString android.content.ContentResolver.query 14/137
Y android.database.Cursor.getString android.util.Log.e 10/96
Z android.database.Cursor.getString android.util.Log.i 7/70

Results

In our study, only 3.5% of the taint flows are “low-hanging fruits” (intra-procedural and uncon-
strained). However, “low-hanging fruits” are still the majority of the intra-procedural taint flows
and they exist in 32% (329) of the apps in our dataset. During the manual inspection for taint
flows with top source-sink-pairs in Table 4.5, we found that taint flows with source-sink-pair of
group X cannot usually be interpreted as leaks. Listing 4.6 shows a simplified taint flow using
this source-sink-pair. The private field this.secret is first tainted. FlowDroid taints the
return value of this.getContentResolver() since the base object is the prefix of the tainted
this.secret. Finally, the taint flow is then reported when the sink is called on the tainted
this.getContentResolver(). This is again an over-approximation FlowDroid uses similar
to the one in Listing 4.5. However, such taint flow could be a leak, since the implementation of
Context.getContentResolver and ContentResolver.query could be overridden maliciously.

In comparison to group X, taint flows of group Y and Z are straightforward: they log data
from databases. Actually, the log methods from android.util.Log are the most frequently used
sinks. About half (46%) of the “low-hanging fruits” are leaks in which sensitive information such
as data from databases, location information, device ID, the MAC addresses or even passwords
are logged. Many of these leaks even have source and sink at the same line of code. In addition,
the text that will be logged often specifies what kind of data is being logged.

101

4.6 COVA-assisted Qualitative Analysis of Android Taint-Analysis Results

public class MainActivity extends Activity {
private String secret;
public void foo(){

this.secret = cursor.getString(i); //source
this.getContentResolver().query(...); //sink, no leak

}}

Listing 4.6: False-positive code pattern from group X.

Besides log methods, sinks for inter-component communication such as Bundle.putString,
SharedPreferences.putString and Context.sendBroadcast are also popular among the “low-
hanging fruits”. They appeared in 20% of the taint flows. To determine if these taint flows
are malicious, additional context must be provided, since benign applications often use these
methods for accessing and modifying preference data between activities.

Discussion

First, our results of the qualitative analysis show important ways in which taint-analysis tools
can and should be improved. On the one hand, the sources and sinks configured for the tools
should be checked more carefully, since an inappropriate source can cause a large amount of false
positives, as we determined for FlowDroid in RQ1. Researchers who used FlowDroid in the
default configuration may need to re-evaluate their conclusions. Even in just a short investiga-
tion, we already found 9 papers in which the respective work was built on top of FlowDroid
and inappropriate sources or sinks were used [LBK+14, MSTdF17, ZJY+17, CKBG18, AKG+15,
SBF+16, TTYR17, RAB14, WWLZ16]. In none of these papers did the authors mention that
they have manually checked for false positives that would have been caused by the inappropriate
source/sink configurations. Hence, while it is possible that such manual checks were conducted
without mentioning them, it is equally possible that the papers report results that are distorted
by the presence of those false positives. Given the over 1,000 citations of the FlowDroid paper,
many more such works are likely to exist. On the other hand, some rules used in taint analysis
may be not suitable for all sources and sinks, as we have seen in the case shown in Listing 4.5
for FlowDroid, a taint flow was reported when the base object calling the sink was tainted.
However, here the correct way to report a taint flow is when the actual argument (intent) of the
sink is tainted. Such cases could be handled easily without increasing analysis complexity. To
avoid these false positives we discovered in our study, one could introduce a fine-grained specifi-
cation (e. g., return value, argument or receiver) of the sources and sinks rather than just a list
of APIs that are handled equally as the default one in FlowDroid. As mentioned in [Arz16],
FlowDroid also allows users to specify the sources and sinks more expressively in a XML file.
However, it does not provide such a XML file that is ready to use. A recent commercial analysis
engine CodeQL from GitHub also supports fine-grained source/sink/sanitizer specification with
its underlying query language QL [Git19a]. Although we only studied the results reported by
FlowDroid, problems we discovered for such a widely used tool may not be a single case among
numerous taint-analysis tools produced in academia.

Second, hybrid analysis tools may well be feasible for the case of Android. The results of
RQ1 show that to confirm static taint flows dynamically, they should focus on modeling UI
actions, but in some cases must be able to set correct environment options as well, and must
deal with stream-I/O to some limited extent. Luckily, the overlap between those three classes
is small, so that one can probably go a long way even by designing specific, decoupled analysis
tools for all three situations. Our tool COVA can further aid the implementation of such hybrid
analysis tools: the path constraints it computes can guide dynamic analyses, even in situations

102

Chapter 4. Towards Path-Sensitive Analysis with COVA

where flows are not conditioned on external stimuli at all.
Third, “low-hanging fruits”, i.e., unconditional intra-procedural flows, are quite common—

they exist in 32% of all apps as we show in RQ2. Many of such leaks can be easily fixed, and so
even purely static taint-analysis tools can and should prioritize these leaks in the report.

Lastly, we see two actionable aspects of our work: first, our SMT-based path constraints pro-
vide a start toward finding concrete executions to demonstrate vulnerabilities. The constraints
COVA computes can give an initial suggestion how the program inputs for the execution which
exposes the vulnerabilities should be satisfied and can be used to generate inputs. Second,
COVA can be used to enhance the comprehension of static-analysis results, since the con-
straints it computes explain in which circumstance the reported vulnerabilities may occur and
how likely they are to occur. Such information is certainly helpful for developers in triaging
static-analysis results. In the following section, we introduce a proof-of-concept we implemented
addressing test input generation.

4.7 Usage of COVA for Targeted Testing Input Generation

In this section, we introduce the extended COVA for targeted testing of Android apps imple-
mented in the scope a master thesis [Hau21] supervised by me. In the following, COVA refers to
the extended COVA. The general idea of this work is to generate concrete inputs for executing
any statement that is covered in the constraint map generated by COVA.

4.7.1 Android Testing Frameworks

To run Android apps with concrete inputs at scale, one needs a testing framework that auto-
mates the process. There exist a few popular Android testing frameworks to automate scripted

1 public void test{
2 Path apkFile = Paths.get("Example.apk");
3 String url = "http://127.0.0.1:4723/wd/hub";
4 // set up Appium Adnroid driver
5 DesiredCapabilities capabilities = new DesiredCapabilities();
6 capabilities.setCapability(MobileCapabilityType.DEVICE_NAME, "Android Emulator");
7 capabilities.setCapability(MobileCapabilityType.APP, apkFile.toAbsolutePath().toString());
8 AndroidDriver<MobileElement> driver = new AndroidDriver<>(new URL(url), capabilities);
9 driver.installApp(apkFile.toAbsolutePath().toString());

10 driver.launchApp();
11 // start recording
12 driver.startRecordingScreen();
13 Thread.sleep(1000);
14 // enter username and password
15 driver.findElement(By.id("username")).sendKeys("Tom");
16 driver.findElement(By.id("password")).sendKeys("abc123");
17 Thread.sleep(1000);
18 // click login button
19 driver.findElement(By.id("login")).click();
20 // save recording
21 String recording= driver.stopRecordingScreen();
22 Files.write(Paths.get("recording.mp4"), Base64.getDecoder().decode(recording));
23 // exit
24 driver.close();
25 }

Listing 4.7: Appium sample Java test code.

103

4.7 Usage of COVA for Targeted Testing Input Generation

tests, e. g., Espresso [Goo13b], UI Automator [Goo13c], Robotium [Tec14], and Appium [Fou12].
Espresso is the official white-box testing framework for Android, which requires access to source
code for writing test cases. It is usually used for unit testing. UI Automator is a black-box
testing framework that provides APIs to test the UI of Android apps. However, it only supports
Android devices with API level 18 or higher and does not support Webview, which means web-
based code can not be tested [Sha21]. Robotium is an open-source gray-box Android testing
framework that was mostly widely used in the early days of Android. However, it only supports
Java and requires one to recompile or modify the app under test, which is not possible without
the source code [T21].

We need a framework that does not require the original source code and works for APKs.
Appium used in our work is such a framework. It is cross-platform (Android, iOS and Win-
dows) and supports with native, hybrid, and mobile web apps. It supports testing on Android
devices and emulators with all API levels using both UI Automator (API level 18 or higher)
and Selendroid (API level lower than 18). One can write test scripts in several programming
languages, e. g., Java, JavaScript, Objective-C, Python, PHP, Ruby, C# etc. Listing 4.7 shows
a sample Java test code using APIs provided by Appium. This test code installs and launches
the app Example.apk on an Android emulator, enters inputs for both username and password
text fields and clicks on the login button. Our goal of this work is to generate such test code
automatically such that selected target code fragments (e. g., potentially insecure or malicious
code) will be executed when running the test. As the code shows, a string-based layout element
ID (e. g., "username", "password", "login") is required to specify a UI action with Appium.

4.7.2 Extended COVA

Now we introduce the workflow of COVA for targeted testing, which is depicted in Figure 4.9
with 5 steps. The inputs for COVA are an Android APK and a target. A target is any statement
or basic code block that is desired to be executed at runtime. Currently, COVA only supports

Extended COVA

Constraint MapConstraint Analysis

Input Generation

Android APK

Target

Instrumentation Modified Android APK

Activity Transition Path Constraints For
The Target

Sequence of Concrete
Inputs

Appium Runtime Log

1

2

3

4

5

Figure 4.9: The workflow of COVA (extended) for targeted testing.

104

Chapter 4. Towards Path-Sensitive Analysis with COVA

the definition of an invoke statement or an assign statement as a target.
In step 1 , COVA instruments the APK with logging statements at specific code positions,

i. e., before each invoke, assign and if statement. A modified APK is generated in this step.
In step 2 , the constraint analysis in COVA is performed on the modified APK. Espe-

cially, text-based user inputs that are returned from the API View.findViewById(int) are
considered by COVA. In Android apps, the UI components (e. g., button, text field, etc.) of
each activity is declared in a layout XML file (see Listing 4.10a) and can be accessed with
View.findViewById(int) in code. (see Listing 4.10b). COVA starts taint tracking from the
calls to View.findViewById(int) and generates a so-called string taint once the returned View
element is stringfied (line 6 in Listing 4.10b). Operations on the string taints are modeled in
COVA. Note that the complied Dalvik bytecode does not contain the string-based key in the
XML filed als Listing 4.10c shows: the key R.id.weightNum is replaced by a constant integer ID
2131230857 in the Jimple code generated from the bytecode. COVA also resolves the mapping
from integer IDs to string-based keys in the layout XML. This mapping information is needed
later for specifying UI actions with the Appium [Fou12] testing framework as we introduced in
Section 4.7.1 (see also Listing 4.7).

1 <RelativeLayout>
2 <Button
3 android:text="Calculate BMI"
4 android:id="@+id/calcBMI"
5 android:onClick="calculateClickHandler"
6 />
7 <EditText
8 android:textSize="20dp"
9 android:id="@+id/weightNum"

10 android:inputType="numberDecimal"
11 />
12 </RelativeLayout>

(a) Layout XML file.

1 public class BMIMain extends AppCompatActivity{
2
3 public void calculateClickHandler(View view) {
4 // Read the input from a text field in the UI.
5 EditText editText = (EditText) findViewById(R.id.weightNum);
6 int weight = Integer.parseInt(editText.getText().toString());
7 if (weight > 100){
8 calculate(weight);
9 }

10
11 }
12 }

(b) Java code.
1 public class com.zola.bmi.BMIMain extends android.support.v7.app.AppCompatActivity{
2 public void calculateClickHandler(android.view.View){
3 // ...
4 $r1 = virtualinvoke r0.<com.zola.bmi.BMIMain: android.view.View findViewById(int)>(2131230857);
5 $r2 = (android.widget.EditText) $r1;
6 $r3 = virtualinvoke $r2.<android.widget.EditText: android.text.Editable getText()>();
7 $r4 = virtualinvoke $r3.<java.lang.Object: java.lang.String toString()>();
8 $i1 = staticinvoke <java.lang.Integer: int parseInt(java.lang.String)>($r4);
9 if $i0 <= 100 goto label1;

10 specialinvoke r0.<com.zola.bmi.BMIMain: calculate(integer)>($i1);
11 label1:
12 return;
13 }
14 }

(c) Jimple code.

Figure 4.10: A simplified example from the app BMI in F-Droid.

Once COVA computes the constraint map, the next step is to collect a list of constraints
required from the main activity to the Android component (i. e., activity, service, broadcast
receiver and content providers) in which the target resides. Currently, only activity is con-
sidered. In this step 3 , starting from the activity that contains the target and an empty
list, COVA traverses backwards to the main activity and collects constraints at activity tran-
sition statements. Activity transition statements are the statements that call the method
Context.startActivity(). As the example in Figure 4.11 shows, the target is in ThirdActivity
and the constraint at the target statement is C1 = ThirdActivity ∶ compute ∶ onClick ∧
str.length(ThirdActivity ∶ editText) < 10. This constraint means a UI element (i. e., button) in
ThirdActivity with the layout element Id compute needs to be clicked (onClick) and (∧) the
input text for a UI element (i. e., text field) in ThirdActivity with the layout element id editText
must have the length smaller than 10. In comparison to the original COVA, the extended COVA
preserves more precise information (i. e., layoutid ∶ layoutelementid ∶ onClick(optional)) about
the original UI element. C1 is added to the list of constraints at first. Then COVA searches

105

4.7 Usage of COVA for Targeted Testing Input Generation

public class MainActivity extends AppCompatActivity {

 //…
 public void sendMessage(View view) {
 startActivity(new Intent(this, SecondActivity.class));
 }

}

public class SecondActivity extends AppCompatActivity {

 //…
 public void process(View view) {
 startActivity(new Intent(this, ThirdActivity.class));
 }

}

public class ThirdActivity extends AppCompatActivity {
 //…
 public void compute(View view) {
 EditText editText = (EditText) findViewById(R.id.editText);
 if (editText.getText().toString().length() < 10) {

 System.out.println("EDIT_TEXT_LENGTH_SMALLER");//target
 }
 }
}

C3 = MainActivity:sendMessage:onClick

C2 = SecondActivity:process:onClick

C1 = ThirdActivity:compute:onClick ˄
str.length(ThirdActivity:editText) < 10

Figure 4.11: Activity transition: collecting constraints backwards from the target activity
ThirdActivity to the main activity MainActivity.

the activity transition statement that starts ThirdActivity and adds the constraint of that
statement, i. e., C2 which requires a click on a button in SecondActivity with the id process,
to the list. Lastly, C3 is also added to the list, since its corresponding statement is the activity
transition statement that starts SecondAcitivity. So the list of constraints COVA computes
is {C1,C2,C3}. This list will be reversed and taken as input for step 4 .

In step 4 , UI actions and text-based inputs are generated according to each constraint in
the list. Text-based inputs are generated with Z3 by solving the corresponding constraint over
values read from the API View.findViewById(int). Test code with a sequence of UI actions
and inputs is generated and sent to the Appium server when the text code is executed in step
5 . Runtime logs and a recording of the screen are saved after each execution of the app. The
logs can be used to check whether the target was executed.

Five apps from F-Droid were chosen to evaluate the effectiveness of the extended COVA. 20
targets were randomly selected for each app and the list of constraints COVA computed in step
3 were checked manually. Table 4.6 shows the evaluation result. Except the app WorkoutLog,

COVA achieves high precision for the selected targets. The reason why COVA does not work
well (low precision and recall) for the WorkoutLog app is because the app uses an autocomplete
function for text-based input fields. This function also requires prior user data, which can not be
model statically. Other false positives are due to similar reasons—certain methods or arithmetic
operations on text-based inputs are not modeled in COVA, which also lowers both the precision
and the recall.

Although this is just a proof of concept, it nonetheless shows promising accuracy in com-
puting constraints over user inputs and the feasibility of using COVA for targeted testing. One
could use it for dynamic validation of static findings. Static analysis discovers code that yields
the potential for vulnerabilities or for malicious behavior. The vulnerable or malicious code can

106

Chapter 4. Towards Path-Sensitive Analysis with COVA

Table 4.6: Evaluation results on selected F-Droid apps (table reconstructed from [Hau21]).

TP FP TN FN Precision Recall F-Measure
BMI 19 1 0 0 95% 100% 97.4%
WorkoutLog 4 5 0 11 44.4% 26.7% 33.3%
NightMode 12 0 3 5 100% 70.1% 82.8%
ItalianSaid 16 1 0 3 94% 84.2% 88.9%

be chosen as targets for COVA. The concrete values recorded during execution of the app can
be further used to filter false positives or further analysis.

4.8 Threats to Validity

In this section, we discuss the threats to validity regarding the qualitative study presented in
Section 4.6. COVA computes partial path constraints—it only considers control-flow decisions
that are dependent on a list of constraint-APIs we collected. However, as we discuss in Sec-
tion 4.6, we feel that by the way this list was collected, it is comprehensive. We conjoin the
constraints of the source and the sink statement, yet, it is possible there are additional con-
straints caused by intermediate nodes along the data-flow path. However, we did not consider
this to keep the constraint solving tractable. Although COVA supports most language features,
some corner cases such as reflection or native calls are not covered [LSS+15]. In some cases, the
taint set computed by COVA may be incomplete due to unknown return values of API method
calls such that an over-approximated constraint is computed. For Android applications, we use
the call graph constructed by FlowDroid. This call graph, however, is partially incomplete for
library methods and some UI callbacks [Arz16, WZR16]—a limitation of FlowDroid as we
also show in Chapter 1.

Since COVA uses Z3 for constraint-solving, the limitations of Z3 are inherited by COVA.
In our experiments, an average of 49% percent of the analysis time was occupied by Z3. In fact,
this is also one of the main reasons why COVA failed to analyze some apps within the given
time budget. In the worst case, 98% of the analysis time for an app was spent for constraint-
solving. Increasing the time budget may not help, since Z3 can hit memory pressure and throw
exceptions when solving large formulas, which happened in our preliminary experiments. Such
exceptions cannot be evaded by increasing the JVM heap size, since they originate from the
native code of Z3.

Since COVA failed to analyze some apps in our experiment, our study may have been biased
to include only certain kinds of taint flows. Many of the “unconstrained” taint flows might be
constrained by multiple factors in reality.

4.9 Related Work

We discuss how our approach relates to previous work in the areas of taint analysis, path
conditions, as well as hybrid analysis approaches.

Studies Involving Taint Flows Many researchers have studied Android applications from
various perspectives [SGF+13, YXA+15, AKG+15, KWJB13, LKB17, SBF+16, CLHS17]. Avdi-
ienko et al. [AKG+15] compared the taint flows in benign apps against those in malicious apps,
and used machine learning to identify the differences in usage of sensitive data. Unlike COVA,
their approach MUDFLOW does not consider path constraints. Keng et al. [KWJB13] moni-
tored 220 Android apps with the dynamic taint-analysis tool TaintDroid [EGH+14] to study the

107

4.10 Conclusion

correlation between user actions and leaks. However, their results are limited to the leaks they
observed during the runtime. Their results show that many apps leak data due to user actions
on certain GUI widgets, which we were able to show statically. Closely related to our approach,
Lillack et al. [LKB17] also extended taint analysis to explore the variability of Android apps
based on load-time configuration. However, their approach encodes constraint analysis as a
distributive problem in the IFDS framework [RHS95]. For our purpose, this model is insuffi-
cient, since the execution of a branch may depend simultaneously on two or more configuration
options, which IFDS cannot express [Kil73, SRH95].

Path Conditions Many approaches have considered path conditions to increase the accuracy
of their analysis. Snelting [Sne96] has shown how exacting and simplifying path conditions can
improve slice accuracy. Taghdiri et al. [TSS10] made information flow analysis more precise by
incrementally refining path conditions with witnesses that did not yield an information flow in
execution. TASMAN [ARHB15] leverages backward symbolic execution as a post-analysis to
eliminate false positives in which taint flows along paths are infeasible at runtime. TASMAN
is based on the distributive IFDS framework, but constraint computation is not a distributive
problem. TASMAN thus needs to approximate in places which COVA can handle precisely.
In result, COVA’s computation is more expensive but COVA’s path expressions are also more
precise. A general major limitation of symbolic execution is that it cannot explore executions
with path conditions which the underlying SMT solver cannot deal with in the given time
budget [CS13]. This limitation is shared with COVA. To improve scalability, modern symbolic
execution techniques mix concrete and symbolic execution in so-called concolic execution. Anand
et al. [ANHY12] propose a concolic execution approach to generate sequences of UI events for
Android applications. Schütte et al. [SFT15] also use concolic execution to drive execution
to cover target code. They claim that their approach is not limited to any specific kind of
conditions, i.e., can handle all kinds of condition (user input, environmental setting and even
remote site input). Yet their prototype ConDroid was only designed and evaluated for one
specific vulnerability. COVA was evaluated on a wide range of taint flows. The results of our
study indicate that tools which seek to expose taint flow dynamically could concentrate on one
kind of condition at a time, which is important for scalability.

Hybrid Analysis A number of hybrid approaches, i.e., combinations of static and dynamic
analysis, have been proposed for Android malware detection [ZZD+12, YQL+16, Ken16, RATP17,
WL16, XGL+15]. SmartDroid by Zheng et al. [ZZD+12] statically detects UI interaction se-
quences that lead to sensitive API calls, and it exposes those behaviors dynamically. Yang et
al. [YQL+16] propose a hybrid approach in which they first identify the possible attack-critical
path with static mining algorithms based on sensitive APIs and existing malware patterns, then
execute the program in a focused scope under dynamic taint analysis. Wong et al. [WL16]
demonstrate IntelliDroid, a tool which generates a reasonably small set of inputs statically to
trigger malicious behavior of applications. Their evaluation shows that one only needs to execute
a very small part of the application to expose malicious behaviors. Recent work of Rasthofer et
al. [RATP17] combines a set of static and dynamic analyses with fuzzing to generate execution
environments to expose hidden malicious behaviors efficiently.

4.10 Conclusion

In this chapter, we addressed the path-sensitivity that is often omitted by most static taint
analysis approaches. To enhance a client analysis with path sensitivity, we developed a tool called
COVA for tracking user-defined APIs through the program and computing path constraints

108

Chapter 4. Towards Path-Sensitive Analysis with COVA

based on these APIs. The path constraints COVA computes can be used refined the results
of any client analysis. We conducted a COVA-supported study which gathers information
about the nature of static taint-analysis results, particularly with FlowDroid. Our study
shows important ways how static taint-analysis tools can be improved and how information
about taint-flows conditioned on different factors can be used for future taint-analysis research,
particularly with the aim of further eliminating false positives. We extended COVA to not
only compute the path constraint of a target statement, but also generate concrete user inputs
that are required to execute this statement at runtime. Experiments with a small set of apps
from F-Droid show the feasibility of using this approach to generate valid user inputs for testing
randomly selected statements, which is a step towards dynamic validation of static findings.

109

4.10 Conclusion

110

Integrating Static Analyses into IDEs
with MagpieBridge

5
In the previous chapters, we introduced our GenCG and COVA approaches, which provide
support for more effective taint analysis in terms of improving recall and precision. However, to
make the analysis useful also requires effective ways of presenting the findings to users. Evalu-
ations of static taint analyses have been mostly restricted to automated experiments where the
analyses are run in “headless” mode as command-line tools, e. g., FlowDroid [ARF+14], Aman-
droid [WROR14], IccTA [LBB+15], HybriDroid [CLHS17], TAJ [TPF+09], Andromeda [TPC+13].
The analysis findings are either printed as terminal output or stored in files which often do not
follow any standard, paying little to no attention to usability aspects on the side of the user. We
observed that static taint analysis is not the only case that needs better presentation of find-
ings. There are also many analyses that address code quality issues, such as FindBugs [HP07],
SpotBugs [Tea17], PMD [Tea11] for common programming flaws (e. g., unused variables, dead
code, empty catch blocks, unnecessary creation of objects, etc.) and TRACKER [TC10] for re-
source leaks. Other analyses target code performance, such as J2EE transaction tuning [FDC04].
There are also specialized analyses for specific domains, such as Ariadne [DSAR18] for machine
learning. These analyses collectively represent a large amount of work, as they embody a variety
of advanced analyses for a range of popular programming languages. To make this effort more
tractable, many analyses are built on existing program analysis frameworks that provide state-
of-the-art implementations of commonly-needed building blocks such as call graph construction,
pointer analysis, data-flow analysis and slicing, which in turn all rest on an underlying abstract
internal representation (IR) of the program. Doop [BS09, Doo09], Soot [LBLH11a, Soo00],
Safe [Saf14], Soufflé [Sou15] and WALA [WAL06] are well-known.

While development of these taint analyses and other analyses has been a broad success of
programming language research, there has been less adoption of such analyses in tools commonly
used by developers, i.e., in interactive development environments (IDEs) such as Eclipse [IF01],
IntelliJ [Jet01], PyCharm [Jet10], Android Studio [Goo13a], Spyder [Ray09] and editors such
as Visual Studio Code [Mic15a], Emacs [DAMvfsd76], Atom [Git14], Sublime Text [HQ08],
Monaco [Mic16b] and Vim [Moo91]. There have been some positive examples: the J2EE trans-
action analysis shipped in IBM WebSphere [IBM98], Andromeda was included in IBM Security
AppScan [IBM07], both ultimately based on Eclipse technology. Similarly, CogniCrypt com-
prises an Eclipse plugin that exposes the results of its crypto-misuse analysis directly to the
developer within the IDE. Each of these tools involved a substantial engineering effort to inte-
grate a specific analysis for a specific language into a specific tool. Table 5.1 shows the amount
of code in plugins for analyses is a significant fraction of code in the analysis itself. Given that
degree of needed effort, the sheer variety of popular tools and potentially-useful analyses makes

111

Tool Analysis (LOC) Plugin (LOC) Plugin/Analysis
FindBugs 132,343 16,670 0.13
SpotBugs 121,841 16,266 0.13
PMD 117,551 33,435 0.28
CogniCrypt 11,753 18,766 1.60
DroidSafe 41,313 8,839 0.21
Cheetah 4,747 864 0.18
SPLlift 1,317 3,317 2.52

Table 5.1: Comparison between the LOC (lines of Java code) for analysis and the LOC for
plugin.

WALA

TAJ

Atom Vim Eclipse VSCode IntelliJ Sublime

MS
Monaco

Monaco Web Editor

...

Magic Box

Emacs

Soot Doop

Tool A Tool B Tool CAndromeda HybriDroid ... CogniCrypt FlowDroid DroidSafe

JupyterLab

Figure 5.1: The desired solution: a magic box that connects arbitrary static analyses to arbitrary
IDEs and editors.

it impractical to build every combination.
While the difficulty of integrating such tools into different development environments has led

to poor adoption of these tools in practice, it also makes empirical evaluations of them with real
users challenging. As many recent studies show [JSMB13, CB16, DAL+17a], if static analysis
tools do not yield actionable results, or if they do not report them in a way that developers
can understand, then the tools will not be adopted. So to develop and evaluate such tools,
researchers need ways to bring tools into IDEs more easily and quickly.

The ideal solution is the magic box shown in Figure 5.1, which adapts any analysis to any
editor,1 and presents the results computed by the analysis, e.g., security vulnerabilities, using
common idioms of the specific tool, e.g., problem lists or hovers, allowing user interactions, e.g.,
button clicks or configuration.

In this chapter, we present MagpieBridge,2—our magic box which uses three mechanisms
to realize a large fraction of this ultimate goal:

1. Since many analyses are written using program analysis frameworks, MagpieBridge can
focus on supporting the core data structures of these frameworks. For instance, analyses

1Note: In the following, when we write editor, we mean any code editor, which comprises IDEs.
2In a Chinese legend, a human and a fairy fall in love, but this love angers the gods, who separate them on

opposite sides of the Milky Way. However, on the seventh day of the seventh lunar month each year, thousands
of magpies form a bridge, called 鹊桥 in Chinese and Queqiao in pinyin, allowing the lovers to meet.

112

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

based on data-flow frameworks can be supported if the magic box can render their data-
flow results naturally. Furthermore, while there are multiple frameworks, they share many
common abstractions such as data flow and call graphs, which allows one to support
multiple frameworks with relative ease.

2. More and more editors support the Language Server Protocol (LSP) [Mic16a], a protocol by
which editors can obtain information from arbitrary “servers”. LSP is designed in terms of
idioms common to IDEs, such as problem lists, hovers and the like. Thus, MagpieBridge
can take information from a range of analyses and render it in a few common tooling idioms.
LSP support in each editor then displays these in the natural idiom of the editor.

3. While LSP does not support customized UI elements such as icons or buttons being added
to the editors, many editors can render web pages in editor tabs and provide APIs for
this purpose. Thus, MagpieBridge utilizes such support to allow building complex user
interfaces beyond the native editor.

MagpieBridge was published at the ECOOP conference in 2019 [LDB19]. At the time it
was published, we only considered LSP in MagpieBridge, which leads to limited customization
of the integrated analyses (see Section C.1). However, as I learned more about the editors
over the course of this dissertation, the third mechanism above is added to MagpieBridge to
support complex user interfaces insider an editor. Moreover, the APIs in MagpieBridge have
been updated based on practical use cases. The chapter is based on the latest version of the
MagpieBridge open-source project at https://github.com/MagpieBridge/MagpieBridge.
The outline of this chapter is as follows: we first discuss related work in Section 5.1. We
present the MagpieBridge workflow, explaining the common APIs we defined for enabling
IDE integration of analyses in Section 5.2. In Section 5.3, we demonstrate IDE integration of a
few existing analyses using MagpieBridge. We discuss limitations and conclude the chapter
in Section 5.5.

5.1 Related Work

In this section, we first introduce the IDE integration of existing analysis tools and frameworks.
Since our work is based on language server protocol, we give some background about it and
compare it to other communication protocols between editors and analyses.

Existing tools and frameworks Given the importance of programming tools for IDEs, there
have been a variety of efforts to provide them, both commercial and open source. We here survey
some significant ones, focusing on those that use WALA [FD12] or Soot [LBLH11a, VRCG+10]
and hence are most directly comparable to our work.

There have been a few commercial tools, notably IBM AppScan [IBM07] and RIGS IT
Xanitizer [Gmb13]. Both products make use of WALA and target JavaScript among other
languages. They comprise views to display analysis results as annotations to the source code,
and allow for some triaging of the often longish lists of potential vulnerabilities within the IDEs.
Among other issues, AppScan finds tainted flows and allows the user to focus on a specific flow
through the program, although the user needs to decide what flow is of interest.

There has been a wider variety of open-source tools. WALA has been used in e. g., JOANA [HS09,
GS15]. Soot is used in the widely adopted open-source crypto-misuse analyzer Eclipse Cog-
niCrypt [KNR+17], and is also part of the research tools Cheetah [DAL+17a], SPLlift [BTR+13]
and DroidSafe [GKP+15]. All tools named so far integrate with the Eclipse IDE. JOANA focuses
on Java, including Android, and provides a range of advanced analyses based on information

113

https://github.com/MagpieBridge/MagpieBridge

5.1 Related Work

flow control. CogniCrypt is a tool to detect misuses of cryptographic APIs in Java and Android
applications. Its current UI integration is relatively basic, offering simple error annotations in
the program code and the problems view. CogniCrypt further comprises an XText-based [EB10]
Eclipse plugin that allows developers to edit API-specification files using syntax highlighting and
code completion. Those specification files directly determine the definition of the static analysis.
SPLlift is a research tool to analyze Java-based software product lines. Its UI is an extension to
FeatureIDE [TKB+14], which allows it to show variations in the product line’s code base through
color coding. Detected programming errors are shown as code annotations and in the problems
view. FeatureIDE itself is also an extension to Eclipse. Cheetah is a research prototype for the
just-in-time static taint analysis within IDEs. In Cheetah, the analysis is triggered upon saving
a source-code file, but in its case the analysis is automatically prioritized to provide rapid up-
dates to the error messages in those code regions that are in the developer’s current scope. From
there the analysis works its way outwards, potentially reporting errors in farther parts of the
program only after several seconds or even minutes. Due to this mechanism, Cheetah requires
the IDE to provide information about which file edit caused the analysis to be triggered, and
what the project layout looks like. Cheetah also provides a somewhat richer UI integration than
the previously named tools. For instance, when users select an individual taint-flow message
in the problems view, it highlights in the code all statements involved in that particular taint,
and also shows a list of those statements in a separate view—useful in case those are scattered
across multiple source code files.

Analysis based on Doop [BS09, Doo09] has been experimentally integrated into the Pro-
Guard optimizer for Android applications [Vra17]. This is a once-off integration rather than a
framework for Doop analyses, and it is focused on the build processs rather than the IDE itself.
Still, it reflects the special-purpose integrations that show how analysis tends to be used.

Until now, program-analysis frameworks have focused on making it easier to develop analyses,
with supportive infrastructure for basics such as scalable call graph, pointer analysis, and data-
flow analysis. There have been presentations3 and tutorials4 at conferences which have provided
both introductions and detailed tutorials for analysis construction; however, until now, there
has been little focus on assisting with integrating such analyses into usable tools.

Language Server Protocol (LSP) The Language Server Protocol (LSP) [Mic16a] is a
JSON-based RPC protocol originally developed by Microsoft for its Visual Studio Code to
support different programming languages. LSP follows a client/server architecture, in which
“clients” are typically meant to be code editors, i.e., IDEs such as IntelliJ, Eclipse, etc., or
traditional editors such as Visual Studio Code, Vim, Emacs or Sublime Text. Those clients can
trigger certain actions in “servers”, e. g., by opening a source-code file. Those servers can be of
different flavours, but LSP allows them to contribute certain contents to the editor’s user inter-
face, such as code annotations, list items or hovers. We will give concrete examples, including
screenshots, in Section 5.3. As we show in this work, the LSP’s design lends itself to implement
static code analysis tools as servers. In such a design, clients trigger analysis servers through
LSP, and those servers communicate back their results through LSP as well, causing analysis
results to automatically be shown in the client through the respective editor’s native interfaces.

SASP and SARIF The Static Analysis Server Protocol (SASP) [Gra18], although similar in
name to LSP, is a distinctly different protocol. Started in 2017 by the static code analysis vendor
GrammaTech, it describes a standardized communication protocol to facilitate communication
between static analysis tools and consumers of their results. Compared to LSP, it supports

3e. g., https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
4e. g., http://wala.sourceforge.net/wiki/index.php/Tutorial

114

https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
http://wala.sourceforge.net/wiki/index.php/Tutorial

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

a richer data-exchange format that is explicitly fine-tuned to static analysis. This is realized
through the Static Analysis Results Interchange Format (SARIF) [OAS18, Gra18] that SASP
uses to communicate static-analysis results from servers to clients. Generally, SASP therefore
promises a more tight coupled integration compared to LSP static analyses into editors, po-
tentially needing more work on the server. Also, as of now, SASP and SARIF have seen little
adoption by tool vendors. Currently, the standard is mostly put forward by GrammaTech, which
through SASP offers third-party static analysis tools to allow a triaging of those tools’ results in
GrammaTech’s CodeSonar [Gra05]. SARIF exporters currently exist for some few static analysis
tools, including CogniCrypt [KNR+17], the Clang Static Analyzer [Gro07], Cppcheck [Mar07],
and Facebook Infer [Fac15], which makes them amenable for an integration through SASP. How-
ever, right now, CodeSonar appears to be the only client ready to consume SARIF results, and it
is unclear whether this will change in the near future. It is for this reason that MagpieBridge
builds, for now, on top of LSP instead of SASP and SARIF. Furthermore, SASP is still in the
early stage of its development and there exists no formal specification of the protocol [Gra18],
which makes it hard to compare it to LSP in detail and hard to use for our work. Once it
matures, one could potentially use SASP as an intermediate format between the analyzers and
MagpieBridge, so that MagpieBridge translates SASP to LSP. As this dissection is written,
there exists already implementation in MagpieBridge that translates SARIF results to LSP
diagnostics.

5.2 Approach
In this section, we introduce how MagpieBridge leverages both the Language Server Protocol
(LSP) and Hypertext Transfer Protocol (HTTP) to integrate program analyses into editors.
MagpieBridge provides a default implementation of a LSP (language) server, which we call
the MagpieServer. Figure 5.2 shows how MagpieServer runs multiple analyses and handles the
communications in both LSP and HTTP. This server communicates with the LSP clients (edi-
tors) to report analysis results. When customized user interfaces are desired, the MagpieServer
is at the same time a HTTP server that generates a web page and handles requests triggered
by user interactions in the web page. The web page can be displayed in the LSP client, if
the client supports rendering web pages, e. g., Visual Studio Code’s WebView APIs [Mic15b].
For LSP clients that do not have this support, the web page is displayed in the default web

Analysis 1

Analysis 2

Analysis 3

MagpieServerLSP Client Web Browser

...

LSP HTTP

Figure 5.2: Overview of the communications supported by MagpieBridge.

115

5.2 Approach

browser configured on the host machine. In the following, we first introduce the workflow of
MagpieBridge and relevant APIs in terms of these two communications in Section 5.2.1. Af-
terwards, we introduce how MagpieBridge was built to support various analysis tools that are
built on top of popular program analysis frameworks in Section 5.2.2.

5.2.1 The MagpieBridge Workflow

MagpieBridge uses the Language Server Protocol to integrate program analyses into editor
and IDE clients. MagpieBridge is implemented using the Eclipse LSP4J [CDvfsd16] LSP
implementation based on JSON-RPC [Gro05], but MagpieBridge hides LSP4J details and
presents an interface in terms of high-level analysis abstractions. The overall workflow in Fig-
ure 5.3 shows how analysis can be registered, triggered by common coding activities inside the
editors, and analysis results can be automatically displayed.

There are multiple mechanisms by which LSP-based tools can be used, but the most common
mechanism is that an IDE or editor is configured to launch any desired tools. Each tool is built
as a jar file based on the MagpieServer, with a main method that creates a MagpieServer (List-
ing 5.1), then adds the desired program analyses (Analysis in Listing 5.2) with addAnalysis,
and then launches MagpieServer with launch so that it receives messages. There are two kinds
of Analysis defined in MagpieBridge: the ServerAnalysis and the ToolAnalysis. Both in-
terfaces extend the Analysis interface. While the ServerAnalysis interface is used for analyses
which are written in Java, the ToolAnalysis interface is designed for analyses that are written
in other programming languages and have command line interfaces. The ToolAnalysis defines

LSP4J

addAnalysis(...)

analyze(...)

consume(Collection<AnalysisResult>, ...)

didOpen(DidOpenTextDocumentParams)

publishDiagnostics(PublishDiagnosticsParams)

launch(…)

hover(TextDocumentPositionParams)

response: Hover

codeLens(CodeLensParams)

response: CodeLens

didChange(DidChangeTextDocumentParams)

analyze(...)

...
...

Analysis MagpieServer LSP Client

...

Tim
e

Initialize(InitializeParams)

IProjectService
setRootPath(…)

didSave(DidSaveTextDocumentParams)

response: InitializeResult

Figure 5.3: Overall MagpieBridge workflow without customized web interfaces.

116

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

Figure 5.4: Configuration for Sublime Text to launch MagpieServer.

additional APIs to Analysis that allow definition of commands that need to be supported in the
IDE integration. An Analysis (ServerAnalysis or ToolAnalysis) can be added to run on the
MagpieServer with the addAnalysis and launch edges in Figure 5.3. With a jar that creates
MagpieServer with analyses being added, MagpieBridge can be used simply by configuring
an editor to launch it. Figure 5.4 shows our Sublime Text setup to launch both Ariadne and
CogniCrypt analyses. The user merely obtains jar files of the analyses and sets up Sublime Text
to launch each of them for the appropriate languages. That is all the setup that is needed.

Based on LSP4J, there are several mechanisms for sending and receiving messages. Most
clients/editors simply launch the server and then expect it to handle messages using standard
I/O (e. g., Eclipse, IntelliJ, Emacs and Vim); however some clients expect to talk using a well-
known socket (e. g., Spyder), Web-based tools communicate using WebSockets (e. g., Jupyter
and Monaco) and only few tools support both standard I/O and socket (e. g., Visual Studio
Code). Our MagpieServer supports all these channels out of the box and can be configured
to communicate with a client using any of the channels. Once MagpieServer is launched, it
interacts with the client tool using standard LSP mechanisms:

• The first step is initialization. The client sends an initialize message to the server,
which includes information about the project being analyzed, such as its project root path.
MagpieServer calls setRootPath on each IProjectService (service that resolves the
project scope such as source code path and library code path) instance to initialize project
path information. MagpieBridge currently understands Eclipse, Maven, Gradle and
Npm projects. MagpieServer also sends the response InitializeResult which declares
its capabilities back to the client. This is shown in the upper portion of Figure 5.3.

• Subsequently, the client informs MagpieServer whenever it works with a file: the didOpen,
didChange and didSave messages are sent to the server whenever files are opened, edited
and saved respectively. These messages allow MagpieBridge to call the analysis via
the analyze method whenever anything changes. This is shown with the didOpen and
analyze edges in Figure 5.3. The analysis provider/writer can decide the granularity
of when MagpieServer actually runs analysis and how much analysis it does via the
ServerConfiguration argument passed to the constructor of MagpieServer as shown in
Listing 5.1.

• As shown in the rest of Figure 5.3, analysis uses the consume method to report analysis
results of type AnalysisResult (Listing 5.4) to MagpieServer, which handles them via

117

5.2 Approach

the appropriate LSP mechanism, specified by the kind method (Listing 5.4), which returns
a Kind (Listing 5.5):

Diagnostic denotes issues found in the code, corresponding to lists of errors and warnings
that might be reported by a compiler. Tools typically report them either in a list
of results or highlight the results directly in the code. When the program analysis
provides such results via consume, MagpieServer reports them to the client tool with
the LSP publishDiagnostics API.

Hover denotes annotations to be displayed for a specific program variable or location.
It could be used to report e. g., the type of a variable or the targets of a function
call. Tools often show them when the cursor highlights a specific location. When the
program analysis provides such results via consume, MagpieServer keeps them and
reports them to the client tool as responses to LSP hover API calls by the client tool.

CodeLens denotes information to be added inline in the source code, analogous to gen-
erated comments. Tools typically report them as distinguished lines of text inserted
between lines of source code. When the program analysis provides such results via
consume, MagpieServer keeps them and reports them to the client tool as responses
to LSP codeLens API calls by the client tool. A CodeLens can also be actionable.
When the user clicks on it, encoded commands defined in the command method of
AnalysisResult (Listing 5.4) will be executed.

These analysis results have a position method that returns a Position (Listing 5.6)
denoting the source location to which the result pertains. The result requires a precise lo-
cation based on starting and ending line and column numbers, which is required by the LSP
protocol. Note that the Position of MagpieBridge implements the Java Comparable
interface; MagpieBridge exploits this to store analysis results in NavigableMap struc-
tures so that it can find the nearest result if a user hovers in a location near a result,
e. g., some whitespace immediately after a variable or expression.

To enable complex interactions between the user and the analysis, MagpieBridge can be
configured to start a HTTP server and communicate with a web front end inside the LSP client
or a web browser (if the client does not support rendering web pages):

• When the MagpieServer is configured to show a web interface, it creates and starts a local
HTTP server via CreateAndStartLocalHttpServer when it responds to the client with
InitializeResult as shown in Figure 5.5. MagpieBridge has a default HTTP handler
called MagpieHttpHandler.

• The URL hosting the web interface is then opened by the web browser engine and a GET re-
quest is sent to the MagpieServer. HTTP requests are handled by the MagpieHttpHandler.
The MagpieHttpHandler generates a web page for the analysis, which is based on the
getConfigurationOptions() and getConfiguredActions() methods implemented for
the analysis in Listing 5.2. For each analysis, one can define a list of ConfigurationOptions
(see Listing 5.7) that should be shown in the web interface. A configuration option can
have different OptionTypes as shown in Listing 5.8: checkbox stands for an option with
boolean value (e. g., an analysis rule set is enabled or disabled), text stands for text-based
inputs (e. g., the path to configuration files) and container stands for an option group
that contains multiple options. Similarly, actions (e. g., run the analysis) upon buttons
can be defined for an analysis. A Configuration Action is defined as a Runnable object
as shown in Listing 5.9. Figure 5.6 shows the default web interface generated by Mag-
pieBridge, in which the configuration options are listed on the left and the actions are

118

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

Magpie
Http

Handler

addAnalysis(...)

configure(...)

analyze(...)

HTTP Response: HTML Page

launch(…)

POST Request: option1=checked

POST Request: Run Analysis

... ...

Analysis MagpieServer LSP Client

Tim
e

Initialize(InitializeParams)

response: InitializeResult

Web
Frontend

GET Reqeust

CreateAndStartLocalHttpServer(...)
...

getConfigurationOptions()

getConfiguredActions()

generateHTML(...)

setConfigurationOptions(...)

performConfiguredAction(...)

consume(...)
publishDiagnostics(PublishDiagnosticsParams)

Figure 5.5: Overall MagpieBridge workflow with customized web interfaces.

listed on the right. One can also customize a web page with more styles as the one shown
in Figure 5.7.

• Users can select configuration options in the web page and submit them back to the
MagpieServer. POST requests encoding user’s selection and actions inside the web page
are generated and handled by the MagpieServer. In Figure 5.5, the user first selected a
configuration option option1=checked, this analysis is the configured by with option via
the configure method (see Listing 5.2). Then the user clicks a Run Analysis button to
trigger the analysis to run. The analysis results are then shown in the editors via LSP
mechanisms.

119

5.2 Approach

Figure 5.6: The default web interface generated by MagpieBridge.

Figure 5.7: A customized web interface we designed for Amazon CodeGuru Reviewer (later
introduced in Chapter 6).

120

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

public class MagpieServer implements AnalysisConsumer, LanguageServer, LanguageClientAware{
protected LanguageClient lspClient;
protected Map<String, IProjectService> languageProjectServices;
protected Map<String, Collection<Either<ServerAnalysis, ToolAnalysis>>> languageAnalyses;

public MagpieServer(ServerConfiguration config) {...}
public void addProjectService(String language, IProjectService projectService){...}
public void addAnalysis(Either<ServerAnalysis, ToolAnalysis> analysis, String... languages){...}
public void doAnalyses(String language){...}
public void consume(Collection<AnalysisResult>, String source){...}

protected void createAndStartLocalHttpServer() {...}
public List<ConfigurationOption> setConfigurationOptions(Map<String, String> options) {...}
public void performConfiguredAction(NameValuePair actionName, NameValuePair sourceName) {...}
...

}

Listing 5.1: The core of the server.

public interface Analysis<T extends AnalysisConsumer> {
public String source();
public void analyze(Collection<? extends Module> files, T server, boolean rerun);
public default List<ConfigurationOption> getConfigurationOptions() {

return new ArrayList<>();
}
public default List<ConfigurationAction> getConfiguredActions() {

return new ArrayList<>();
}
public default void configure(List<ConfigurationOption> configuration) {}
public default void cleanUp(){};

}

Listing 5.2: Interface for defining analysis on the server.

public interface IProjectService {
public void setRootPath(Path rootPath);
public String getProjectType();

}

Listing 5.3: Interface for defining service which resolves project scope.

public interface AnalysisResult {
public Kind kind();
public String toString(boolean useMarkdown);
public Position position();
public Iterable<Pair<Position,String>> related();
public DiagnosticSeverity severity();
public Pair<Position, String> repair();
public String code();
public default Iterable<Command> command() { return Collections.emptySet(); }

}

Listing 5.4: Interface for defining analysis result.

public enum Kind { Diagnostic, Hover, CodeLens }

Listing 5.5: Enum for defining kinds of analysis results.

121

5.2 Approach

public interface Position extends Comparable {
public int getFirstLine();
public int getLastLine();
public int getFirstCol();
public int getLastCol();
public int getFirstOffset();
public int getLastOffset();
public URL getURL();

}

Listing 5.6: Interface for defining position

public class ConfigurationOption {
private String id;
private final String name;
private final OptionType type;
private List<ConfigurationOption> children;
private String value;
private String source;
private Object extra;
...

}

Listing 5.7: Class for defining a configuration option of the analysis.

public enum OptionType { checkbox, text, container }

Listing 5.8: Enum for defining types of configuration options.

public class ConfigurationAction {
private String id;
private String name;
private Runnable action;
private String source;
...

}

Listing 5.9: Class for defining an action allowed by the analysis.

122

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

5.2.2 The MagpieBridge System

We explain our MagpieBridge system with an overview in Figure 5.8. MagpieBridge needs
to support various analysis tools that were built on top of different frameworks, e.g., TAJ,
Andromeda and HybriDroid use WALA, while CogniCrypt, FlowDroid and DroidSafe rely on
Soot and many other analyses are based on Doop. These analysis frameworks have different
IRs, which MagpieBridge needs to use to generate analysis results. One key requirement for
all the frameworks supported by MagpieBridge is very precise source-code mappings, since in
LSP all the messages communicate using starting and ending line and column numbers. In the
following we explain how MagpieBridge achieves this requirement for WALA-based analyses,
Soot-based analyses and Doop-based analyses respectively.

5.2.2.1 WALA-based Analysis

The simplest code path in MagpieBridge (flow 1 in Figure 5.8) uses WALA source language
front ends for creating IR on which to perform analysis. WALA comprises both bytecode and
source-code front ends for different languages (Java, Python and JavaScript), and the source-
code front end preserves source-code positions very well. This information can be consumed
later in the LSP notifications, since it is kept in WALA’s IR. WALA’s IR is a traditional three-
address code in Static Single Assignment (SSA) form, which is translated fromWALA’s Common
Abstract Syntax Tree (CAst).

The approach to source-code front ends for WALA is using existing infrastructure for each
supported language: Eclipse JDT for Java, Mozilla Rhino for JavaScript and Jython for Python.
Each of these front ends is maintained with respect to its respective language standards, and
all the front ends provide precise mappings of source locations for constructs. To provide a
detailed source mapping for the generated IR, each WALA function body has an instance of
DebuggingInformation (Listing 5.10) which allows MagpieBridge to map locations from re-
quests to IR elements at a very fine level.

Listing 5.10 details how much source mapping information is available. getCodeBodyPosition
is the source range of the entire function, and getCodeNamePosition is the position of just the
name in the body. getInstructionPosition is the source position of a given IR instruc-
tion. getOperandPosition is the source position of a given operand in an IR instruction.
getParameterPosition is the position of a given parameter declaration in the source.

MagpieServer

Source
Code

Library
Code

Bytecode
Front Ends

WALA IR

Soot IR

Doop IR

Source-Code
Position

Information Soot-based
Analysis

Doop-based
Analysis

WALA-based
Analysis

Analysis
Results

WALA-Soot
IRConverter

WALA-Doop
IRConverter

LSP
Notifications

WALA
Source-Code
Front Ends

Eclipse
IntelliJ
Emacs
Atom
Vim

VSCode
MS Monaco

Sublime

...

LSP Client

LSP

Existing Flow

Work in progress

Results
Mapping

2

1

3

Figure 5.8: Overview of our MagpieBridge system.

123

5.2 Approach

public interface DebuggingInformation {
Position getCodeBodyPosition();
Position getCodeNamePosition();
Position getInstructionPosition(int instructionOffset);
String[][] getSourceNamesForValues();
Position getOperandPosition(int instructionOffset, int operand);
Position getParameterPosition(int param);

}

Listing 5.10: Debugging information interface.

5.2.2.2 Soot-based Analysis

Soot comprises a solid Java bytecode front end. The bytecode only has the line number of each
statement. This is not sufficient to support features such as hover, fix and codeLens in an editor.
For those features, position information about variables, expressions, calls and parameters are
necessary. However, they are lost in the bytecode. Soot further comprises source-code front ends.
Such front ends, however, require frequent updates due to the frequently changing specification
of the Java source language, which has caused Soot’s source-code front ends to become outdated.
Besides, Soot IR was not designed to keep precise source-code position information, e.g., there
is no API for getting the parameter position in a method. Our approach is to take WALA’s

WALA IR Soot IR
1. SSAArrayStoreInstruction
2. SSAArrayLoadInstruction
3. SSAArrayLengthInstruction
4. AstLexicalWrite
5. AstLexicalRead
6. EnclosingObjectReference
7. SSACheckCastInstruction
8. SSALoadMetadataInstruction
9. SSAUnaryOpInstruction
10. SSAPutInstruction
11. SSANewInstruction
12. SSAInstanceofInstruction
13. SSAConversionInstruction
14. SSABinaryOpInstruction
15. SSAGetInstruction
16. SSAGetCaughtExceptionInstruction
17. SSAMonitorInstruction
18. SSASwitchInstruction
19. SSAThrowInstruction
20. AstJavaInvokeInstruction
21. SSAConditionalBranchInstruction
22. SSAReturnInstruction
23. SSAGotoInstruction
24. AstAssertionInstruction

JAssignStmt

JIdentityStmt
JEnterMonitorStmt/JExitMonitorStmt
JLookupSwitchStmt
JThrowStmt
JInvokeStmt/JAssignStmt
JIfStmt
JReturnStmt/JReturnVoidStmt
JGotoStmt
synthetic static field +JIfStmt

Figure 5.9: Conversion from WALA IR to Soot IR.

124

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

public class ExampleAnalysis implements ServerAnalysis{

@Overide
public String source(){

return "Example Analysis"
}

@Overide
public void analyze(Collection<Module> sources, MagpieServer server){

ExampleTransformer t = getExampleTransformer();
loadSourceCodeWithWALA(sources);
JavaProjectService service = (JavaProjectService) server.getProjectService("java");
loadLibraryCodeWithSoot(service.getLibraryPath());
runSootPacks(t);
List<AnalysisResult> results = t.getAnalysisResults();
server.consume(results);

}
...

}

public class Example{

public static void main(String... args){
MagpieServer server = new MagpieServer();
IProjectService service = new JavaProjectService();
ExampleAnalysis analysis = new ExampleAnalysis();
String language = "java";
server.addProjectService(language, service);
server.addAnalysis(language, analysis);
server.launch(...);

}
}

Listing 5.11: The MagpieServer runs a Soot-based analysis.

source-code front end to generate WALA IR and convert it to Soot IR. Soot has multiple IRs,
the most commonly used IR is called Jimple [VRCG+10]. Jimple is also a three-address code
and has Java-like syntax, but is simpler, e.g., no nested statements. Opposed to WALA IR,
Jimple is not in SSA-form. Both WALA and Soot are implemented in Java and manipulate the
IR through Java objects. This makes the conversion between the IRs feasible. In particular,
we have implemented the WALA-Soot IRConverter and defined the common APIs (Listing 5.4)
to encode analysis results, as well as the MagpieServer (Listing 5.1) that hosts the analysis.
Currently the WALA-Soot IRConverter only converts WALA IR generated by WALA’s Java
source-code front end. In fact, WALA uses a pre-IR before generating the actual WALA IR
in SSA-form, and this non-SSA pre-IR is actually the IR that we convert to Jimple. Since
also Jimple is not in SSA, this conversion is more direct. This pre-IR contains 24 different
instructions as shown in Figure 5.9. After studying both IRs, we found out that 15 instructions
in WALA IR can be converted to JAssignStmt in Jimple. Most of the times the conversion is
one-to-one, only a few cases are one-to-many. The precise source-code position information from
WALA IR is encapsulated in the tags (annotations) of the converted Soot IR. In the future, we
plan to convert WALA IR from front ends of other languages such as Python and JavaScript to
a potentially extended version of the Soot IR.

The flow 2 in Figure 5.8 for integrating Soot-based analysis starts by dividing the analyzed
program code into application source code and library code (which can be in binary form). The
source code is parsed by one of WALA’s source-code front ends and it outputs WALA IR, as

125

5.2 Approach

well as precise source code position information associated in the IR. For a Soot-based analysis,
the WALA IR is translated by a WALA-Soot IRConverter into Soot IR (Jimple). The library
code is parsed by Soot’s bytecode front end and then complements the program’s IR obtained
from the source code. The Soot IR in Figure 5.8 thus consists of two parts: Jimple converted
by the WALA-Soot IRConverter, which represents the source-code portion/application code of
the program, and Jimple generated by Soot’s bytecode front end which represents the library
code. Based on the composite Soot IR, Soot further conducts a call graph and optionally also
pointer analysis, which can then be followed by arbitrary data-flow analyses.

Listing 5.11 shows an example of running a Soot-based analysis ExampleTransformer (anal-
yses are called transformers in Soot) on the MagpieServer. The ExampleTransformer ac-
cesses the program through the singleton object Scene in order to analyze the program. Once
the MagpieServer receives the source code, the method loadSourceCodeWithWALA parses the
source code, converts it to Soot IR with the WALA-Soot IRConverter and stores the IR in
the Scene. The class JavaProjectService resolves the library path for the current project.
loadLibraryCodeWithSoot loads the necessary library code from the path and adds the IR
into Scene. The method runSootPacks invokes Soot to build call-graph and run the actual
analysis. The analysis results will be then consumed by the server. In this example, only the
source files sent to the server are analyzed together with the library code. However, it can be
configured to perform a whole-program analysis, since the source code path can also be resolved
by JavaProjectService.

We explain how the class JavaProjectService which implements IProjectService resolves
the full Java project scope, i.e., source code path and library code path. As specified in LSP, the
editors send the project root path (rootURI) to the server in the first request initialize.
Library and source code path can be resolved by using the build-tool dependency plugins
(e. g., caching results of mvn dependency:list) or parsing the configuration (e. g., pom.xml,
build.gradle) and source code files located in the root path. Project structure conventions for
different kinds of projects are also considered in MagpieBridge. For more customized projects,
MagpieBridge also allows the user to specify the library and source code path manually as
program arguments.

5.2.2.3 Doop-based Analysis

Doop uses Datalog to allow for declarative analysis specifications, encoding instructions as Dat-
alog relations as well as instruction source positions. There is code to convert from the WALA
Python IR to Datalog, and that captures both the semantics of statements as well as source
mapping, and these declarations capture the information needed for analysis tool support. For
instance, there is a Datalog relation that captures instruction positions and is generated directly
from WALA IR:

.decl Instruction_SourcePosition(?insn:Instruction,
?startLine:number, ?endLine:number, ?startColumn:number, ?endColumn:number)

This code has been used experimentally for analysis using Doop of machine code written in
Python. This code path could be used to express analyses in editors using MagpieBridge, and
such work is under development.

126

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

5.3 Integration of Existing Static Tools
To make MagpieBridge more concrete, we use two illustrative analyses, based on different
frameworks—Soot and WALA, respectively—for different languages—Java and Python—in dif-
ferent domains—security and bug finding—both in a range of editors:

CogniCrypt analyzes how cryptographic APIs are used in a program, and reports a variety of
vulnerabilities such as encryption protocols being misused or when protocols are used in
situations where they should not. The tool then also gives suggestions on how to fix the
problem. CogniCrypt comprises a highly efficient demand-driven, inter-procedural data-
flow analysis [SAB19] based on Soot, and has its own Eclipse-based plugin. As Table 5.1
shows, its plugin actually required substantially more code than the analysis itself. The
plugin also is limited to Eclipse. We illustrate what it looks like to use CogniCrypt in mul-
tiple tools using MagpieBridge. To keep exposition simple, we focus on a case in which a
weak encryption mode is used (Electronic Codebook Mode, ECB). In the general case the
analysis can also report complex flows through the program. Screenshots in Figure 5.10,
Figure 5.11, Figure 5.12 and Figure 5.13 show the same crypto warning reported by Cog-
niCrypt in different editors. As we can see, only the call Cipher.getInstance with the
insecure parameter is marked in each editor. We also compared our MagpieBridge-based
CogniCrypt to the existing CogniCrypt Eclipse Plugin. Details about this comparison can
be found in Section C.1.1.

Ariadne analyzes how tensor (multi-dimensional array) data structures are used in machine-
learning code written in Python, and reports a range of information. It presents basic
tensor-shape information for program variables, and finds and fixes certain kinds of pro-
gram bugs. A key operation is reshaping a tensor: the reshape operation takes a tensor
and a new shape, and returns a new tensor with the desired shape when that is possible.
To simplify complex tensor semantics, a tensor can be reshaped only when its total size
is equal to size of the desired new shape. Another operation is performing a convolution,
e. g., conv2d, which requires the input tensor to have a specific number of dimensions. We
illustrate cases of these bugs, and how they are shown in multiple editors (Figure 5.14,
Figure 5.15, Figure 5.16, Figure 5.17, and Figure 5.18).

We illustrate how the aspects of LSP used by MagpieBridge are rendered in a variety of editors;
while there are common notions such as a list of diagnostics, different tools make different choices
in how those elements are displayed. We describe in turn several LSP aspects and how analysis
information is displayed using them.

5.3.1 Diagnostics

The most straightforward interface is for an analysis to report a set of issues, but even this
simple concept is handled differently in different editors.

• Some editors have a problem view, i.e., a list summarizing all outstanding issues. An
example of this interface is Sublime Text, illustrated in Figure 5.12 where a warning about
weak encryption is shown in a list.

• Some editors do not have such a list, but choose to highlight issues directly in the code.
An example of this interface is Monaco, illustrated in Figure 5.11; the same warning about
weak encryption is shown inline. To minimize clutter, editors typically make such warnings
as hovers, and we show it displayed in Monaco. A somewhat different visualization of the
same idea is in Figure 5.17, in which Atom shows an invalid use of reshape in Tensorflow.

127

5.3 Integration of Existing Static Tools

Figure 5.10: Insecure crypto warning in Eclipse.

Figure 5.11: Insecure crypto warning in Monaco.

• Some editors do both. An example of this interface is Eclipse, illustrated in Figure 5.10
where a warning about weak encryption is shown both inline and in a list. Again to
minimize clutter, the inline message is realized via a hover.

Note that all issues displayed here are computed by the very same analysis in all editors and
rendered as the same LSP objects; however, they appear natural in each editor, due to the
editor-specific LSP client implementations.

5.3.2 Code Lenses

Code lenses look like comments, but are inserted into the code by analyses and are used to
reflect generally-useful information about the program. An example is shown in Figure 5.14,

128

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

Figure 5.12: Insecure crypto warning in Sublime Text.

Figure 5.13: Insecure crypto warning in IntelliJ.

Figure 5.14: Code lenses showing tensor types in JupyterLab.

in which the shapes of tensors are listed explicitly for various program variables and function
arguments.

129

5.3 Integration of Existing Static Tools

Figure 5.15: Hover tip showing tensor types in PyCharm.

Figure 5.16: Hover tip showing tensor types in Vim.

Figure 5.17: Diagnostic warning showing an incompatible reshape in Atom.

5.3.3 Hovers

Hovers are used to reflect generally-useful information about the program, but, unlike code
lenses, they are visible only on demand. As such, an analysis can sprinkle them liberally in the
program and they will not be distracting since they are only visible when needed. Different tools
have different ways of user interaction. In Figure 5.15, the user hovers over the variable x_dict
in PyCharm to reveal the shape of tensors that it holds. In Figure 5.16, the user enters a Vim
command with the cursor over the variable x_dict.

5.3.4 Repairs

LSP provides the ability to specify fixes for diagnostics; a diagnostic can specify replacement
text for the text to which the given diagnostic applies. The method repair() in the interface
AnalysisResult is designed exactly for this purpose (see Listing 5.4). Figure 5.18 shows an
example of this: the top half shows an error report in Visual Studio Code that a call to conv2d

130

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

Figure 5.18: Diagnostic error showing fixable incorrect dimensions for conv2d. Error shown in
Visual Studio Code and quick fix in Emacs.

is invalid, since such calls require a tensor with four dimensions whereas the provided argument
has only 2. However, the analysis determines that a plausible fix is to reshape the provided
argument to have more dimensions, and the lower part of the figure shows a prompt, in Emacs,
suggesting a reshape call to insert.

5.4 More Tool Integrations

In addition to CogniCrypt and Ariadne, which we demonstrated extensively, we also integrated
COVA (introduced in Chapter 4)5, the taint analysis tool FlowDroid6 and the Facebook Infer
analyzer [Fac15]7 into IDEs with MagpieBridge.

We integrated COVA with MagpieBridge into IDEs to show path constraints on demand.
The idea behind this integration is that developers can use it to identify how code fragments are
affected by which configuration options when maintaining and testing their code. For example,
developers want to test a newly implemented feature in a suitable environment. They could
choose the “show constraint” code action next to the code fragment they want to test as shown
in Figure 5.19. The IDE integration of COVA will show the path constraint of the queried
code fragment based on both software and hardware configuration options as in Figure 5.20.
On the left side, the constraint-APIs (from where the configuration option values are read)
that are tracked by COVA are displayed as a mapping from their symbolic values to the API
signatures. Below the constraint-APIs, a witness path shows how these constraint-APIs are used
in the code. On the right side, the path constraint and witness path are both shown in a hover
message indicating that the SDK version must be smaller than 15 and the model of the device is
“HTC”. With such information developers can then set up the appropriate testing environment.

FlowDroid is a Soot-based tool and is written in Java. For its integration we implemented
5Integration prototype for COVA available at https://github.com/secure-software-engineering/COVA
6Integration prototype for FlowDroid available at https://github.com/MagpieBridge/FlowDroidLSPDemo
7Integration prototype for Facebook Infer available at https://github.com/MagpieBridge/InferIDE

131

https://github.com/secure-software-engineering/COVA
https://github.com/MagpieBridge/FlowDroidLSPDemo
https://github.com/MagpieBridge/InferIDE

5.4 More Tool Integrations

Figure 5.19: Requesting path constraint from COVA by using the pop-up “show constraint”
code action.

Figure 5.20: Left: Constraint-APIs and witness path; Right: path constraint and witness in
hover message.

a ServerAnalysis (see Section 5.2.1) that calls the SetupApplication.runInfoFlow of Flow-
Droid with the default configuration in the analyze method. Because FlowDroid only analyzes
bytecode, we modified it to have separate code loading. The modified FlowDroid uses the IR-
Converter (see Section 5.2.2) to load the source code and Soot’s byte code front end to load the
library code. Figure 5.21 shows FlowDroid analyzing the data flow starting from a parameter
of the HTTP request, finding a cross-site scripting vulnerability in a web app which can be
exploited by attackers, and showing a witness trace of it in Visual Studio Code. The expressions
in the witness are shown precisely, which is possible since the IRConverter of MagpieBridge is
able to run FlowDroid unchanged on the converted IR and recover precise source mappings. As
far as we know, this has never been done before with FlowDroid. MagpieBridge then renders
this precise trace (encoded as related of AnalysisResult in Listing 5.4) from FlowDroid in the
IDE, also the first time this has been done. We would like to have both COVA and FlowDroid
integrated into Android Studio, however, the only open-source LSP support for Android Studio
we found was unfortunately too buggy.

Infer is a static analyzer that finds quality bugs in Java, C/C++ code, e. g., null pointer
exceptions, resource leaks, race conditions, etc. It is written in OCaml and provides a command
line interface. We implemented a ToolAnalysis (see Section 5.2.1) that runs the command
“infer run –reactive” by default for Java projects that are built by Maven and Gradle.
Users can also define any command they would like infer to run via the default web interface
generated by MagpieBridge as introduced in Section 5.2.1. This was realized by setting
providing a text-based ConfigurationOption. Figure 5.22 shows how infer warns about a
resource leak in the web editor Gitpod [Git18]. We also integrated it for Eclipse, IntelliJ and
Visual Studio Code. Our Visual Studio Code Extension InferIDE is publicly freely available
at the market place of Visual Studio Code. For IntelliJ, we developed a plugin8 to support

8IntelliJ LSP support public available at https://github.com/MagpieBridge/IntelliJLSP

132

https://github.com/MagpieBridge/IntelliJLSP

Chapter 5. Integrating Static Analyses into IDEs with MagpieBridge

Figure 5.21: A taint flow reported by FlowDroid in Visual Studio Code.

Figure 5.22: Infer warning in the web editor Gitpod.

some basic LSP features (i. e., publishDiagnostics, hover, codeActions, showMessage and
showMessageRequest). This plugin also supports displaying a web page directly in IntelliJ via

133

5.5 Conclusion

an extended LSP notification showHTML tailored for MagpieBridge. Another application of
MagpieBridge is to render the taint flows in IDEs with the TB-Viewer for the TaintBench
work introduced Chapter 2. The latest integration with MagpieBridge was the cloud-based
Security Application Testing Tool (SAST)—CodeGuru Reviewer—from Amazon Web Services.
Details about this integration will be introduced in Chapter 6.

5.5 Conclusion
The difficulty of integrating static tools into different IDEs and editors has caused little adoption
of the tools by developers and researchers, and MagpieBridge addresses this problem by pro-
viding a general approach to integrating static analyses into IDEs and editors. MagpieBridge
uses the increasingly popular Language Server Protocol and supports the rich analysis frame-
works WALA and Soot. We demonstrate the generalizability of MagpieBridge by using it to
integrate multiple analyses into IDEs from both academia (CogniCrypt, Ariadne, COVA and
FlowDroid) and industry (Facebook Infer and Amazon CodeGuru Reviewer). When we pub-
lished MagpieBridge in 2019, MagpieBridge had some limitations (Section C.1.2) which are
inherited from LSP, e. g., lack of customized user interfaces. To overcome these limitations, we
proposed and extended MagpieBridge to use web interfaces for building more complex user
interfaces in this chapter. We believe this will lead to a promising future of MagpieBridge.
Hopefully, MagpieBridge will open more and more doors for developers to access static anal-
yses and foster developers to write more secure softwares.

134

IDE Support for Cloud-based SAST Tools

6
In previous chapters, we have been focused on the technical aspects of improving static taint
analysis for the real world. In this chapter, we focus on the users of static analysis tools—
software developers who write code and are expected to use analysis tools to find vulnerabilities
in their code. As MagpieBridge, introduced in the last chapter, makes IDE integration of
static analyses much easier, the next step is to understand what specific features are expected
by developers in terms of IDE integration of static analysis for security testing. In this chapter,
we introduce a novel study [LSSB21a] we conducted with software developers at Amazon Web
Services which targets the increasingly popular cloud-based Static Application Security Testing
(SAST) tools, in which static taint analysis is often implemented.

Many companies are providing static analysis as a service, e.g., Coverity Scan [Syn08], Ver-
acode [Ver06], Checkmarx [Che06] and LGTM [Git19b]. These tools fit well into CI/CD, since
CI/CD allows time for deep static analyses (e.g., inter-procedural data-flow analysis) of the
complete code base without taking up resources on a user’s machine. There are many benefits
for performing static analysis tasks in the cloud. From the user’s perspective, it can provide
central storage and tracking of analysis results. Cloud-based SAST tools usually offer hooks
to integrate with popular CI/CD systems, such as GitHub Actions, Jenkins, or Travis CI and
offer a browser-based dashboard for developers to manage findings. From the supplier’s per-
spective, parallelism in the cloud can improve the performance of these tools. As reported by
Microsoft [KBL16], moving static analysis for Windows drivers to the cloud significantly reduced
the analysis time spent for the svb_bugbash suite with 22.5x speedup. In addition, the cloud
environment provides a central configuration of the analysis. SAST tool suppliers can tune
the analysis engine to keep the false-positive rate low and update the analysis rule set without
shipping constant updates to customers.

Despite all these benefits of doing static analysis in the cloud, multiple studies have shown
that the ideal reporting location for static analysis is the developers’ IDE [CB16, DWA20]. So,
there is a disconnect between the typical workflow, where SAST tools perform deep analysis in
CI/CD, and developers’ expectation of interacting with these tools much earlier in the develop-
ment lifecycle, directly from the IDE. Some cloud-based SAST tools provide an IDE integration
to trigger an analysis manually from the IDE. E.g., Veracode Static for IDE [Ver17] allows de-
velopers to upload binaries to the cloud, start a scan on demand, and triage the findings from
the IDE. Does this style of IDE integration meet developers’ expectation?

Integrating such a cloud-based SAST tool into the developers’ workflow comes with a set of
challenges. In CI/CD, it is acceptable if an analysis spends several minutes computing in the
cloud. How would such waiting time impact the user experience in the IDE? Another challenge

135

6.1 Background

of designing such an IDE integration is dealing with the desynchronization between the code
that is analyzed in the cloud and the code in developers’ IDE. While the analysis is running
remotely, developers might write more code which makes the analysis results “out-of-date”. How
should such results be displayed in the IDE? Especially for long-running analysis, are developers
aware of the time to run it?

The main goal of our work in this chapter is to explore how IDE support for a purely
cloud-based static analysis, that is typically used in CI/CD, should be designed to meet the
expectations of developers. We identify the key design elements for such IDE support, and
investigate whether it fits better into developers’ workflow in comparison to a web-based solution.
Specifically, does it encourage more usage of the analysis, improve developers’ performance (i.e.,
less time to fix code) and perceived usability? To investigate whether an IDE solution can
improve developers’ workflow, we conducted a user study (due to COVID-19, all interviews and
usability tests were done remotely). The four stages of the user study were:

1. User Interviews (Section 6.2): We started by interviewing developers to understand
their expectations of how cloud-based analyses should be triggered from an IDE, how the
findings should be displayed there, and what UX features developers would like.

2. Prototyping (Section 6.3): Guided by the user interviews, we developed an IDE prototype
for the existing tool CodeGuru Reviewer [Ser20], using its infrastructure for CI/CD.

3. Second-round Interviews (Section 6.4): We presented the IDE prototype to the same
developers of stage 1 to evaluate whether the design met their expectations. While devel-
opers were satisfied with most features implemented in the prototype, they found existing
mechanisms for CI/CD, e.g., code uploading via Git, were cumbersome in the IDE.

4. Usability Testing (Section 6.5): Finally, we assessed our IDE prototype with a larger
group of developers. In this test, we applied both quantitative and qualitative research
methods to determine if the IDE solution was an improvement. We found that, using the
IDE prototype, developers performed code scans three times more often than using the
web-based solution. Our measurements also show a promising reduction in time for fixing
code. However, bringing the findings of the tool into the IDE did not necessarily improve
developers’ workflow. Specifically, they expected:

• more education on capabilities and limitations of cloud-based SAST tools,
• real-time feedback on analysis progress (e.g., progress bars),
• quick validation of each fix, which implies incremental analysis on code changes,
• seamless analysis of code (e.g., an analysis button without going through steps such

as uploading it),
• more interactive ways to suggest rescan, integrated into current workflows.

6.1 Background

Our study was conducted with developers at Amazon Web Services (AWS). We focused on the
cloud-based SAST tool—CodeGuru Reviewer, which is used as part of the CI/CD process
inside AWS. At AWS, every commit to its code bases is required to go through a code review
process first. Teams can configure different SAST tools, including CodeGuru Reviewer,
in their code review process. CodeGuru Reviewer has an expected running time of under
10 minutes. Currently, CodeGuru Reviewer integrated in the code review process only gets
triggered to run (along with other quality assurance tools) when developers submit code changes

136

Chapter 6. IDE Support for Cloud-based SAST Tools

to a remote repository via an internal pull request tool. This internal tool pushes code to a
detached branch and developers have to wait until CodeGuru Reviewer and other quality
assurance tools finish running. The findings of these tools are displayed in a web application.
Developers have to address the findings before merging the code changes. Usually, developers
address the findings together with comments from their teammates. However, developers told
us they would like to get findings from CodeGuru Reviewer before their code reviews, which
is not the case in CI/CD, so our focus of this study is to explore how IDE support could be an
improvement over the current flow and whether an IDE solution is better than a web solution.
CodeGuru Reviewer also provides a public API and a web interface to trigger a scan of a
specific commit and fetch the findings. We used this API to build an IDE prototype.

6.2 User Interviews

First, we wanted to identify developers’ expectations from IDE support for cloud-based SAST
tools. With user interviews we aimed to answer the following two research questions:
RQ1: What do developers expect from IDE support for a cloud-based SAST tool?
RQ2: How could such IDE support fit into developers’ workflow?

6.2.1 Methodology

Research Methods We wanted to understand how IDE support for a cloud-based SAST
tool could fit better into developers’ workflow in comparison to a web solution. Thus, we
interviewed developers who already used a cloud-based SAST tool in practice. We conducted
semi-structured interviews with developers using contextual inquiry [SN93]. Contextual inquiry
allows us to understand how developers work with CodeGuru Reviewer on a day-to-day
basis. Before the interview, we sent each participant a link to one of their code reviews on which
CodeGuru Reviewer detected issues. During the interview, each participant was first asked
to talk through their code review regarding CodeGuru Reviewer’s findings. Participants were
asked to demonstrate how they fixed those issues in their IDEs together with the vulnerable
code. Afterwards, while they had their IDEs opened, they were asked about their expectations
on the IDE support and also to describe the features and demonstrate them in their IDEs if
possible. The detailed questions list can be found in Section D.1. To differentiate from common
static tools that run analysis on the same machine as the IDE, we explicitly told participants
that the analysis is running in the cloud and that a scan takes minutes. Each interview lasted
45 minutes to one hour.

Participants We interviewed nine participants who were all software development engineers
from different teams and countries within AWS. To ensure that participants were already fa-
miliar with SAST tools and willing to use them, we started by finding developers who were
involved with code reviews on which CodeGuru Reviewer had found issues (n=328) and
then invited developers (n=252) who replied to the CodeGuru Reviewer findings. All the
interviewees had experience using static analysis tools (CodeGuru Reviewer (9), FindBugs
(7), CheckStyle (6), ESLint (1), SonarQube (1), Coverlay (1), IntelliJ built-in static tools (1)).
In the following, we denote the nine developers with P1-9.

Data Collection All interviews were recorded and transcribed. They were carried out over
video conferencing and all participants shared their screens during the interview so that their
IDE activity could be captured.

137

6.2 User Interviews

Data Analysis The responses were analyzed using thematic analysis. We used both deductive
(codes derived from the questions we prepared for the interviews) and inductive (codes derived
from the responses) coding [FMC06]. The codebook contains 21 codes that were discussed
and agreed upon by two researchers. The list of codes and their definitions can be found
in Table D.1. The coding itself was first done by the researcher who conducted the interviews.
To ensure reliability in the coding, a second researcher checked and discussed all coded data
together with the first researcher. Adjustments were made where disagreement occurred. We
applied an inductive approach to extract emerging themes which could be used to answer our
research questions. We hit saturation [GBJ06, GSS68] after the 7th participant, whereby no
new information was obtained.

6.2.2 Result of the User Interviews

The analysis produced five themes: Analysis Triggering Mechanism, Result Retrieval Mecha-
nism, Result Display Mechanism, UX Features, and Workflow Integration. In the following, we
will talk about how the first four themes of the IDE solution could fit into developers’ workflow
(the fifth theme).

6.2.2.1 Analysis Triggering Mechanism

In this section, we introduce how developers expect cloud-based SAST tools to be triggered from
their IDEs, how code in their IDEs could be uploaded to the cloud and other expectations on
this topic.

Ways of Triggering: The participants mentioned four ways the analysis should be triggered
from the IDE: manual (n=8/9)1, build (n=6/9), fully-automated (n=4/9), and semi-automated
(n=1/9). The most mentioned way was manual. 8 participants said the analysis should be
manually triggered by clicking a button in the IDE or by pressing a key shortcut. Participants
would like control over the timing when their code is analyzed as P7 told us:

“I would want to control it by myself. If I would have a simple button to do the
analysis, in preparation I will do the testing, before sending the code review I would
upload the code to get the review by the machine.”

Most participants (n=6/9) also would like the analysis to be triggered in the project build
process. Participants expected it to work this way, since they used other lightweight static
analysis tools like FindBugs that can be configured as a build target.

Some participants (n=4/9) mentioned that the analysis should be triggered in a fully-
automated way. The developers don’t want to do anything else to trigger the analysis except
writing the code. Real-time feedback from the analysis was expected. P9 explained us the
reason:

“I don’t want to introduce new behavior [...] If there is a button, during my normal
flow, I’m very likely to forget that button.”

P7 mentioned a semi-automated way; he expected that the analysis can be configured to run
when he presses Control + S to save a file.

Code Uploading: Since the analysis is running remotely, we interviewed the participants to
understand how they expected the code to be uploaded to the cloud. The participants mentioned
two ways: uploading with analysis triggering (n=6/9) and continuous uploading (n=4/9). The
majority of participants (n=6/9) expected the code, especially the changes, to be uploaded when

1We denote the numbers in fractions with the denominator being the sample size.

138

Chapter 6. IDE Support for Cloud-based SAST Tools

the user triggers the analysis. Their responses indicate that they expected the IDE support will
do it for them. Some participants expected the code changes or diffs to be continuously uploaded
in the background.

Developers have two mental models for how cloud-based static analyses should be triggered
from the IDE—via active triggering (manual and build) or passive triggering (fully-automated
and semi-automated). Developers with the first mental model would like to control the timing
when they want feedback from the analysis. They actively search and fix issues once they are
done with their coding task. The others prefer not thinking of the timing when they want
feedback, they expect the IDE solution to provide feedback right after they make mistakes.
Developers want to interact with the analysis as seamlessly as possible in a way that matches
their individual workflows.

6.2.2.2 Result Retrieval Mechanism

All participants expected the IDE support to retrieve analysis results automatically from the
cloud. They did not want to download an analysis report from the cloud and import it into
their IDEs.

Timing: All participants expected the result to be retrieved to their IDEs directly after the
analysis is completed. This can be in the build phase, if the build triggers the analysis; after
the user manually triggered the analysis; or while coding if real-time analysis is possible. Three
participants mentioned that it would be sufficient if the result could be retrieved before they
published code reviews. Although we told participants that the analysis is as time-consuming
as CodeGuru Reviewer, their responses indicated that they were not aware of CodeGuru
Reviewer’s capabilities in terms of performance. They used phrases like “after several seconds”
and “at most 10 seconds”. Some developers told us that they usually go on working on other
tasks after submitting a code review and get notification emails when the analysis result is
ready. They only check the result (of multiple tools) after their teammates review their code.
This probably explains why some developers don’t have a sense of the analysis time of a specific
tool.

Despite usage of cloud-based SAST tools in the CI/CD process, some developers were not
aware of the capabilities and limitations of these tools, e.g., they were unaware how long
CodeGuru Reviewer takes to run.

Project Scope: The participants mentioned four project scopes: entire project (n=7/9),
diffs (n=6/9), selection (n=4/9) and real-time changes (n=2/9). Scope has a twofold meaning:
either they only want the code in respective project scope to be analyzed or they only want
to see the result in the scope. Seven of them expected to see the result of the entire project
they were working on. Five of the seven also wanted partial code to be analyzed or to only see
the result in partial code. Partial code can be diffs or selection (e.g., selected packages, files
or methods). We also noticed that the scope often comes with developer’s primary goal as P9
explained:

“If I just added some code, I am really interested in modifications I made. [...] If I
am working on making the code better, I would want to see all the issues.”

Six participants mentioned that they would like to see the analysis result in their code changes
(diffs) if they knew previously they passed all the analysis checks. Only two participants ex-

139

6.2 User Interviews

pressed that they would like to see analysis result in real-time changes, e.g., P6 said: “If I write
something, the plugin would tell me immediately: are you sure if you want to do this?”

Which part of the analysis result to be displayed in the IDE depends on what developers’
primary goals are. If they are interested in improving overall code quality, showing findings
in the entire project is preferred. If their primary goal is to implement a feature, they would
like to see only findings that are context-close to the code they are working on (e.g., diffs).

6.2.2.3 Result Display Mechanism

When talking about how the analysis result should look in the IDE, many participants demon-
strated their expectations in their IDEs with compiler errors. All participants suggested to
visually highlight or underline the problematic code and display a warning message which ex-
plains the issue when the user hovers over the line of code. In addition, all participants believed
the severity of the issue should be included in the warning, because it helps them to prioritize
tasks. Some developers expected only critical issues to be shown and they must fail or block the
build as P8 told us:

“If there is a failure [...] you have to fix it. However, if there is a warning [...], it is
basically ignored. It is useless.”

Many participants (n=4/9) suggested to have a list view of all issues which allows direct nav-
igation to the line of code when clicking on it. One of them expected to see issues grouped in
packages. Three participants would have liked to have quick fixes attached to the warnings. P8
would like to “have code snippet (vulnerable code)” attached to the warnings such that he “can
easily see what the problem was”.

Display of Invalid Result: Since the analysis is running in the cloud, by the time the
analysis result is back to the user’s IDE, the user might have made more changes to the code.
Thus, we interviewed developers to understand how they expected these invalid or old results
to be handled.

Five of the nine participants expected to see only issues where the code is still in place,
otherwise, “it is misleading” as P1 told us. Also they did not want to spend time on investigating
issues which might not be there anymore due to code changes. P9 suggested:

“The plugin can see this suggestion was for this particular line or file, if this line or
file changed, the suggestion will not be displayed.”

Also, two participants wanted to be informed about the code changes and a rescan (rerun
the analysis) to be suggested by the IDE support, as P3 told us:

“Developers should be informed if they make changes to the code after they trigger
the analysis, they would have to redo the analysis for the changes. They should be
informed that the changes after triggering the analysis would’t be considered. If we
show out-of-date recommendations in the IDE, the developers should be informed that
these recommendations are for the past and they might be not valid now.”

Developers expect to be warned in their code just like the way their IDEs usually show
compiler errors. They do not want to spend time on issues which are out-of-date and expect
the IDE solution to remind them to rescan.

140

Chapter 6. IDE Support for Cloud-based SAST Tools

6.2.2.4 UX Features

The most mentioned feature by participants was quick fix (n=5/9), as P7 describes how he
expected it to work: “you type Alt+Enter, it will offer you some fixes”. Four participants would
like to suppress warnings, either false positives or issues which are less severe. P1 expected it
to be “a list of previously suppressed warnings to re-enable them or something like checkboxes”.
P3 suggested to import a configuration file containing suppressed warnings as CheckStyle does.
P9 would like to “add a line of comment such as ‘disable CodeGuru Reviewer’ to the code
to suppress.”

Participants also expected to customize the rule set of the analysis (n=3/9) and even the
warning severities (n=3/9) to decide which warnings should be displayed. Both warning sup-
pression and customization of rule set were mentioned as developers talked about features that
would be beneficial for their teams.
Developers expect the IDE solution to not only pinpoint issues in their code, but also to fix
them. They do not fully trust static analyses based on previous experience. They expect to
suppress or prioritize warnings based on their own judgment.

6.3 Prototyping

Based on what we learned from the user interviews and the public API of CodeGuru Re-
viewer [Ser21b], we developed an IDE prototype as a Visual Studio Code (VS Code) extension
for CodeGuru Reviewer. In the following, we introduce this prototype with respect to the
themes derived from the interviews.

Analysis triggering, result retrieval and display The prototype provides a control panel
for users to interact with CodeGuru Reviewer in VS Code as shown in Figure 6.1. The
“Show Recommendations” button allows users to view the recommendations (findings) provided

Figure 6.1: Control panel of our IDE prototype.

141

6.3 Prototyping

Figure 6.2: Reminder notifications asking users to rescan.

by CodeGuru Reviewer directly in the IDE. The prototype automatically compares the local
code version to the remote code version and fetches the result to the IDE if a matched analysis is
found. If there are local code changes which haven’t been uploaded to the remote repository, the
prototype displays pop-up notifications to remind the user for a rescan as shown in Figure 6.2.
The user can choose to display the result of the most recent analysis on the current branch with
the “No, still show recommendations” button. Only recommendations in unchanged files will
be displayed in the IDE, since developers told us they would not want to spend time on issues
which might be invalid (see Section 6.2.2.3). If the user chooses to push code and rescan, a
pop-up window will ask for a commit message and code changes will be pushed to the remote
repository. After that, the prototype triggers a new analysis in the cloud. A notification will
then be shown to tell the user about the estimated analysis time (5 to 10 minutes according
to the official documentation) and the result will be automatically retrieved once the analysis
is completed. The “Run Repository Analysis” button allows the user to run a new analysis on
the remote repository. Similarly, it also reminds the user to push code if there are uncommitted
code changes.

Developer

Code

Git Repository

3. CLONE

1. Push Code Changes

Recommendations
CodeGuru
Reviewer

Cloud

4. ANALYZE

2. R
equest A

nalysis

 5. Fetch Recommendatio
ns

Figure 6.3: A typical workflow using our IDE prototype.

142

Chapter 6. IDE Support for Cloud-based SAST Tools

Figure 6.3 shows a typical workflow with five steps using our IDE prototype:

1. Developer modifies code and pushes changes to a remote Git repository.

2. Developer clicks the “Run Repository Analysis” button to request CodeGuru Reviewer
to run a new analysis on the Git repository.

3. CodeGuru Reviewer receives the request and clones the Git repository.

4. CodeGuru Reviewer analyzes the cloned repository and generates recommendations.

5. The IDE prototype automatically fetches the recommendations once CodeGuru Re-
viewer finishes the analysis or the developer clicks the “Show Recommendations” button
to fetch the recommendations to the IDE.

At step 4, while CodeGuru Reviewer is running, the developer can continue working on the
code or switch to other tasks.

Recommendations are displayed in a list view at the bottom of the IDE as shown in Fig-
ure 6.4. They are organized in groups according to the source files. From the interviews, we
learned that some developers expect issues with fix suggestions to be prioritized. For recommen-
dations with fix suggestions, we used the red marker ⊗ as an attentional cue that the warning
was actionable to help developers quickly get to the code. It also indicates these issues are more
severe and must be fixed. Although CodeGuru Reviewer itself does not report the severity of
an issue, our consultation with the engineers of CodeGuru Reviewer revealed that when the
tool provides fix suggestions then it’s typically for more severe issues. Yellow markers were used
for all other findings. These two markers are the default markers provided by VS Code. We also
included weakness types and code snippets in the recommendations, which were not provided
by CodeGuru Reviewer before. Clicking on a recommendation in the list navigates to the
line of code. The code is highlighted and underlined as shown in Figure 6.5. Recommendations
are also displayed in hover messages when the user hovers over the code. The hover message
supports markdown, thus, the URLs to best practices in the recommendations are also clickable.
Except quick fix, we addressed all expectations on result display from developers as introduced
in Section 6.2.2.3. Although we would have liked to provide quick fixes, this feature was not
supported by CodeGuru Reviewer at the time and most issues cannot be easily fixed by
adding/removing/replacing a code string.

Other UX features The prototype was built to support warning suppression and rule set
customization, because these were the most wanted features by developers. Warning suppression
is provided as a code action (automatic refactoring source code) attached to the recommendation

Figure 6.4: Recommendations are displayed in a list view.

143

6.4 Second-round Interviews

Figure 6.5: Warning suppression is shown as a code action.

as shown in Figure 6.5. When the user chooses to suppress a warning, the line of code will not
be marked as an issue anymore and a special line code comment “SUPPRESS CodeGuru
Reviewer” is automatically added. Users can also manually add the suppression comment to
code. No warning will be shown at lines with that comment.

Because we could not change CodeGuru Reviewer to allow its rule set to be customized,
we implemented a rule set filter to allow users to select/unselect the weakness types as shown
under the settings section in Figure 6.1. Only recommendations with the selected weakness
types would be displayed in the IDE. Developers also mentioned they would like to limit the
display of findings to specific packages or classes, so the prototype provided a scope filter to
select files or packages they were interested in. VS Code also has a built-in filter for the warning
markers such that users can filter the recommendations based on the severities in the issue list.
The configuration in the rule set filter and scope filter were locally stored by the prototype.

6.4 Second-round Interviews
After implementing the prototype, we re-invited the 9 developers we interviewed for a second-
round interview. Five (P1, P4, P7, P8 and P9) of them accepted our invitations. These second-
round interviews allowed us to fix minor issues prior to the usability test with a larger group of
developers to ensure the usability feedback was focused on core issues rather than surface-level
design concerns. The interviews were structured by demonstrating the features of the prototype
addressing the topics from previous interviews. Each interview was about 30 minutes. After
demonstrating a feature, we reminded the participant what she/he told us in the previous
interview and asked how the feature differs from what she/he expected. We transcribed and
coded the interviews to assess user sentiment (negative and positive) across the themes extracted
from the first round of interviews.

Participants were all very positive about how analysis results were automatically retrieved
and displayed in the IDE. They also liked the warning suppression and filters feature. Four
participants didn’t expect the code needs to be pushed to the remote repository to trigger the
analysis. P7 explained:

“Because for me it was like making dirty commits and I don’t like it.”.

P8 gave us his reason:

“I am not using test branch at all, I am only using the mainline.”

He felt it was not helpful if he needs to setup a remote branch for his changes to run the analysis
before sending a code review.

Although participants were critical about pushing code to the remote Git repository, we could
not change the public API of CodeGuru Reviewer to support other channels. Regarding old
findings in changed files, P8 expected “to see something even I change the file, unless I change
exactly that line.” After we explained that there might be case that an issue is fixed when new
lines are added to the file, he responded with “I know the system doesn’t know if it is fixed, but
I would like to keep track of what was the issue.”

144

Chapter 6. IDE Support for Cloud-based SAST Tools

However, the prototype reminds the user to rescan if there are local changes and the findings
displayed in the IDE will not be removed unless the user clears them intentionally or requests
for an new scan. Before we started the usability test with a larger group of developers, we tested
the prototype with six developers and fixed bugs discovered in the interviews and during the
test.

While code uploading mechanism via Git push is widely accepted in CI/CD integration, some
developers found it cumbersome in the IDE due to different working habits, e.g., they only
commit once per feature or do not use the Gitflow [Atl20] workflow.

6.5 Usability Testing

6.5.1 Methodology

Study Design To test if the IDE solution was an improvement over the web-based solution, we
conducted a within-subjects usability test with developers. In comparison to between-subjects
studies, it eliminates problems concerning individual differences [CGK12]. We wanted to com-
pare the condition with the IDE prototype to the web-based solution of CodeGuru Reviewer
in AWS Console, where users can request analyses for their Git repositories and view rec-
ommendations in a web browser. For simplicity, we use IDE to represent our IDE prototype
and Web to represent AWS Console in the following. We prepared two tasks, X and Y. In
each task, participants were asked to fix issues in a prepared Java application either with help
of the IDE prototype or AWS Console. All issues can be detected by the analysis engine
of CodeGuru Reviewer. The prepared applications use AWS services with the AWS SDK
for Java [Ser21a] and each of them contains 8 issues with different weakness types. The test
applications and issue list can be found in [LSSB21b]. Although the official documentation of
CodeGuru Reviewer gives 5-10 minutes as the average analysis time, for the two applications
used in our study, the analysis time was just 3 minutes for each.

We applied 4 different treatments to participants as listed in Table 6.1. T1, T2 are the
treatments in which participants first test IDE, while in C1, C2 participants started with Web.
From the study in [DWA20], we learned that the typical length of a working session with a SAST
tool of developers is 10-30 minutes (see Table 2 in [DWA20]. The authors refer to SAST tools
with “dedicated tools”). Thus, we chose 30 minutes as the session length in our study. In each
session, the participants were given maximally 30 minutes to solve the task. After each session,
participants were asked to fill out an exit-survey (see the survey in Section D.3) and take an
interview with us to examine how participants used the tools and how the tools affected their
behaviors.

Table 6.1: Four treatments.

Treatment Session 1 Session 2
System Task System Task

T1 (n=8/32) IDE X Web Y
T2 (n=8/32) IDE Y Web X
C1 (n=8/32) Web X IDE Y
C2 (n=8/32) Web Y IDE X

145

6.5 Usability Testing

4

2

0

2

1

1

3

3

2

3

2

1

0

2

1

5

0 2 4 6 8 10

Less than 2 years

2 to 5 years

5 to 10 years

More than 10 years

T1 T2 C1 C2

Figure 6.6: Years of professional coding experience in Java.

Participants We sent 1323 invitation emails to different mailing lists at AWS. In the email,
we asked people to fill out a demographic survey if they accepted our invitations. We received
49 survey responses and, based on the responses, we removed participants who do not write
code in Java. We chose 32 of them for our study. The participants were located in 9 different
countries. 75% (n=24/32) of them never used CodeGuru Reviewer before. Half (n=16/32)
of them write code in VS Code and 78% (n=25/32) had written applications before with the
AWS SDK. Figure 6.6 shows their professional coding experience in Java. More than half of
them (n=17/32) have at least 5 years experience. We refer to these 32 participants with G1-32.

Study Setup The participants were assigned round-robin to one of the four treatments. In all
treatments, participants were asked to perform the tasks in VS Code. After a brief introduction
to the study, the participants were given the tasks in written form. We explicitly told the
participants that CodeGuru Reviewer is a cloud-based SAST tool and the expected analysis
time to be a few minutes. We ran CodeGuru Reviewer on the test application before each
session and made sure that participants saw the CodeGuru Reviewer’s findings displayed
in either VS Code or in AWS Console before they started doing the task. We also provided
participants user guides of the tested tool, i.e., IDE prototype or AWS Console. We told
participants they could read them if they had questions. Participants were asked to solve the
tasks independently without any help from us. They were also asked to give us clear signals as
they started and finished the tasks to record the time.

After each session, participants were asked to fill out an exit-survey containing the 10 System
Usability Scale (SUS) questions [Bro96]. In the survey, we also asked participants to evaluate the
difficulty of the task using a Likert scale, select features of the tool they thought were helpful,
estimate the number of issues they fixed, and answer some open-ended questions.

In each treatment group, we randomly chose 3 participants for monitoring. We asked these
12 participants to share their screen with us and think aloud as they were performing the tasks.
The others were not monitored. Because not all participants could take interviews with us
after their sessions due to scheduling constraints, we only interviewed 24 of them after they
completed the exit-surveys. We asked them about the experience using the tool for the given
task and whether the tool worked as they expected.

6.5.2 Quantitative Analysis

Developers tend to have different working habits when it comes to fixing issues in code as we
learned from previous interviews. While some developers tend to validate the fix every time
they address an issue, others fix all issues at a time and check them at once. We wanted to
investigate how different solutions for a cloud-based SAST tool impact developers’ interaction
with the tool. Our within-subjects design allows us to test the effect on individual participants.
We also wanted to investigate whether our IDE prototype was sufficient to improve developers’

146

Chapter 6. IDE Support for Cloud-based SAST Tools

performance in code fixing and perceived usability of the tool. With the quantitative data we
collected during the test, we answer the following questions:
RQ3: Does the IDE prototype encourage developers to interact more with the cloud-based
SAST tool in comparison to the AWS Console?
RQ4: Do developers fix issues more efficiently with the IDE prototype in comparison to the
AWS Console?
RQ5: Do developers perceive the IDE prototype to be more usable than the AWS Console?

Behavior (RQ3): Our alternative hypothesis for RQ3 is:

H1: Using the IDE prototype developers will rescan more frequently than using the
AWS Console.

To test H1, we logged how many times each participant ran repository analysis successfully.
Participants ran the analysis three times more often from the IDE (117 in total) than from the
AWS Console (36 in total) as Figure 6.7 shows. We used the Shapiro-Wilk test [SW65] to test
whether our data is normally distributed. Since the data doesn’t distribute normally, we applied
a two-tailed Wilcoxon signed-rank test [Woo08] with α = 0.05, which is non-parametric and used
for repeated measures. Although our hypothesis is one-sided, we used two-tailed testing to
ensure the statistical power in both directions [RN10]. We present the results in Table 6.2 with
participants grouped by their treatments.

The statistics in Table 6.2 (a) suggests that there is a significant difference (W <Wcrit and
p-values are much smaller than 0.05) in number of scans. Using the IDE prototype developers
performed analysis significantly more often than using the web-based solution, despite the fact
that the analysis engine was the same and the tasks were similar. This indicates that the IDE
solution fits better into developers’ workflow. Developers wanted validation of their fixes more
often when addressing static findings and the IDE prototype allowed them to run analysis easier.

Based on survey responses to the question “How did you know that you fixed the issues?”,
participants were more confident about the number of fixed issues they estimated in the IDE
condition. While 8 participants gave the answer saying that they didn’t know in the Web con-
dition, only 3 participants were not sure as they used the IDE prototype. Later in Section 6.5.3
we will introduce the opinions of developers and how they felt their workflows were impacted in
the two conditions.

The IDE prototype also logged the total number of usage by all participants for each feature

32

18

34

13

33

4

18

1

0 10 20 30 40 50 60 70 80 90 100 110 120

IDE

Web

T1 T2 C1 C2

Figure 6.7: How often did participants rescan (run analysis)? The numbers shown in each bar
are the total number of rescans performed by all participants in the associated treatment group
in the condition.

147

6.5 Usability Testing

Table 6.2: Results of two-tailed Wilcoxon signed-rank tests with α = 0.05. N is sample size
without ties. Wcrit is the critical value for N and α. p-values < 0.05 are marked with *.

(a) Number of Scans
Group N W -value Wcrit at N (p<0.05) p-value
T1, T2 15 21 25 * 0.0264
C1, C2 12 7 13 * 0.0121
All 27 46 107 * 0.0006

(b) Average Time to Fix an Issue
Group N W -value Wcrit at N (p<0.05) p-value
T1, T2 14 46 21 0.682
C1, C2 14 50 21 0.873
All 28 194 116 0.841

(c) SUS-Score
Group N W -value Wcrit at N (p<0.05) p-value
T1, T2 14 27 21 0.110
C1, C2 14 46 21 0.682
All 28 160 116 0.327

Table 6.3: IDE feature usage.

Feature #Usage Feature #Usage
Show Recommendations 318 Rule Set Filter 9
Run Repository Analysis 84 Warning Suppression 2
Clear Recommendations 20 Scope Filter 0

as shown in Table 6.3. Participants clicked the “Show Recommendations” button 318 times,
which is 3.8 times than they clicked the “Run Repository Analysis” button. The huge difference
between the usage of these two buttons suggested that participants didn’t choose to rescan but
opted for displaying old findings as they were doing the tasks. While most participants actively
clicked the “Run Repository Analysis" button to rescan (84 times), some participants took
suggestions from the IDE prototype (33 times) and selected “Yes” in the pop-up notification to
rescan as shown in Figure 6.2. Other features were rarely used. This is likely due to the short
time planned for each session. We asked developers to select features they thought were useful
in the survey, 13 of the 32 participants selected warning suppression, 8 for the rule set filter and
5 for the scope filter.

Performance (RQ4): Our alternative hypothesis is:

H2: Given an application containing issues that can be detected by CodeGuru Re-
viewer, developers using the IDE prototype will be faster than using the AWS Con-
sole to fix an issue.

While 20 participants did not finish the task (timed out) in the session using the IDE
prototype, the number with the AWS Console is 21. In three of the four groups (T2, C1 and
C2), participants fixed more issues in the IDE than in the Web condition as shown in Figure 6.8
(An issue was considered fixed if CodeGuru Reviewer didn’t report it again.). Surprisingly,
participants fixed the same number of issues (157) in total when using the IDE prototype and the
AWS Console. This is close to the number of issues participants estimated in the exit-survey,
i.e., 165 in the Web and 166 in the IDE condition.

148

Chapter 6. IDE Support for Cloud-based SAST Tools

35

52

42

33

45

40

35

32

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

IDE

Web

T1 T2 C1 C2

Figure 6.8: How many issues did participants fix?

Web

IDE

T1 T2 C1 C2

Figure 6.9: Boxplots for average time participants used to fix an issue. Average values are
marked with ×.

For each participant, we computed the average time used to fix an issue. Since one participant
didn’t fix any issue with AWS Console, we excluded this data from the test. Our test failed to
reject the null-hypothesis as the statistics shown in Table 6.2 (b). However, as the boxplots in
Figure 6.9 show, there is a promising time reduction (average and maximum values are lower)
in the IDE condition among most groups of participants (T2, C1 and C2). In these groups,
developers’ performance was also more consistent in the IDE condition, since the boxes are
smaller.

Usability (RQ5): Although we were comparing a research prototype to a commercial tool
designed by professional UX designers, we formulated the alternative hypothesis in an optimistic
way.

H3: Developers will rate the IDE prototype with higher SUS-scores.

We evaluated the survey responses to the 10 SUS questions and computed the SUS-scores.
The higher the score is, the better the perceived usability. Again, we applied Wilcoxon signed-

149

6.5 Usability Testing

rank test to the SUS-scores and the result is shown in Table 6.2 (c). There is no statistically
significant difference between the two conditions regarding the SUS-scores.

However, we found out that participants tended to rate the tool they tested later with
higher SUS-scores as the boxplots in Figure 6.10 show. We observed that many participants
who started testing the IDE prototype at first (i.e., T1 and T2) were actually not expecting the
analysis to be time-consuming. These participants were more confused as the IDE prototype did
not display results immediately as they tried to run the analysis. Note that 75% (n=24/32) of
the participants never used CodeGuru Reviewer before. In contrast, participants who tested
the Web condition first had a better sense of the asynchronous nature and the analysis time as
they tested the IDE prototype later. We will discuss this further with the qualitative data in
Section 6.5.3.

Although we pseudo-randomly sampled participants into groups to control for key factors,
like experience with pre-existing tools, we had a few issues specifically affecting group T1. The
data were affected by four participants in T1 who fixed more issues in the Web condition (less
time per fix as shown in Figure 6.9) and rated extremely low SUS scores in the IDE condition.
Participant G34 had more than 10 years of development experience and was very familiar with
SAST tools used in CI (including CodeGuru Reviewer), so he was extremely fast in the Web
condition (only used half of the time as in the IDE) and fixed more issues. In the interviews,
participants G20 and G21 mentioned that they did not understand there was no local analysis
and got confused in the IDE condition, while in the Web condition it was straightforward for
them and they could better focus on the task. G2 was observed spending time exploring the
features of the IDE prototype rather than fixing issues. He gave a much lower SUS score for
IDE than for Web.

Web

IDE

IDE - Web (T1+T2) Web - IDE (C1+C2)

Figure 6.10: Boxplots for SUS-Scores.

150

Chapter 6. IDE Support for Cloud-based SAST Tools

Developers’ perceived usability of the IDE prototype was impacted by both their pre-existing
expectations (on IDE integration of lightweight static analyses) and familiarity with the cloud-
based SAST tool.

6.5.3 Qualitative Analysis

We coded the after-session interviews and survey responses to “Tell us what needs to be im-
proved". We reused the codes from previous interviews introduced in Section 6.2 and Section 6.4
and also added 12 new codes (see codes in Table D.1). We answer the following questions:
RQ6: How does the IDE prototype differ from the expectations of developers?
RQ7: How did developers think the IDE prototype impacted their workflows?

6.5.3.1 RQ6: How does the IDE prototype differ from the expectations of devel-
opers?

The positive things developers mentioned about the IDE prototype were similar to those we
heard from previous interviews introduced in Section 6.4. Moreover, developers were very sat-
isfied with the quality of the analysis result. They felt the recommendations were precise and
informative. This is probably the reason why warning suppression was rarely used in the test. In
the following, we focus on the major issues of the IDE prototype pinpointed by developers. We
also identified some issues in the AWS Console and reported them to the engineering team.

Analysis Triggering Mechanism: The biggest issue mentioned by participants (n=10/32)
was uploading code via Git. Some participants felt uncomfortable to push code without a code
review. Others felt less confident to push code without testing it locally. Although the test
applications provide unit tests, these participants didn’t run them at first, instead, they expected
to get feedback before testing.

Many participants (n=8/32) were expecting fast local validation of fixes when they clicked
on “Run Repository Analysis” button, as G8 said:

“when I modified the code, it was strange to see the squiggly lines here and there
saying there was an error.”

Although there were pop-up notifications shown in the IDE mentioning the analysis time and
suggesting rescan, some participants seemed to pay little attention to those pop-ups. These
participants are mostly from the groups who tested the IDE prototype at first.

Developers expected IDE support to allow usage of cloud-based SAST tools before their
code goes into the next phases (test, CI/CD) in the development lifecycle. They wanted the
analysis of code without going through steps such as uploading it.

Result Retrieval and Display Mechanisms: Most problems came from the analysis time
and poor indication of the analysis progress in the IDE. CodeGuru Reviewer needs about 3
minutes for reanalyzing each test application, which is shorter than the official average analysis
time (5-10 minutes) given by CodeGuru Reviewer. Still, it was “painfully slow to the point
I was worried the plugin was unresponsive” as G15 told us. As mentioned above, pop-ups were
not sufficient for informing participants about the analysis time. As G8 told us, although he
read the pop-ups he thought it was a “generic message” and “didn’t consider it would be the
exact time”. More than one third of the participants (n=13/32) we interviewed expected to see
a progress bar or a dynamic display of analysis status in the IDE. They wanted to “see what it

151

6.5 Usability Testing

(the service) is currently doing, so not just all of a sudden, a pop-up comes up saying the result
is ready.” This is also the pain point in the AWS Console, since there is no progress indication
either.

Using the IDE prototype, many participants told us they kept working after started a new
scan. Most confusion came from displaying old findings. Some participants didn’t rescan, but
chose to see them in the IDE and clicked the “Show Recommendations” button multiple times
as they were fixing the issues. They thought this button performed local validation of a fix,
although this button actually checks code version and only displays the findings in unchanged
files. This led to “the problem (finding) disappeared and I had trouble to get them again.” as
G12 described. This can probably be resolved by reading the user manual or a mechanism
that checks local changes better. Other participants felt “the outdated messages are annoying,
I’d rather have them disappear when a line gets updated, to invalidate them.”, since they were
expecting the prototype to be as reactive as lightweight static analysis tools.

Pop-ups were less effective in educating developers on mechanisms built in the IDE solution.
If the analysis is not returning results instantaneously or developers’ activities in the IDE
are not blocked, the display of old findings and unpredictable waiting time for new findings
are “deal breakers”. This suggests developers need clear visual cues (e.g., progress bars) to
understand when the analysis is running and if findings are outdated.

UX Features: Five participants mentioned that they were not aware that the analysis was
running remotely, thus, they were expecting real-time feedback due to previous experience. As
G20 told us that he didn’t think about the analysis was running in the cloud. He said:

“My initial perception is that this is going to be some sort of static analysis tool. I
was expecting it to be a similar experience to other static analysis tools I used before.”

These five participants suggested more obvious visual indication for the asynchronous nature of
the IDE solution.

Another feature that was missed by participants for both the IDE prototype and AWS
Console is a way to keep track of addressed issues. G9 told us he was using the rating buttons
(thumb up and down symbol) in the AWS Console “as almost a checklist. I know which I
have done because I marked them helpful.” Although quick fix was the most mentioned feature
in our first user interviews introduced in Section 6.2, only 3 participants mentioned it this time.
Developers understood that it was harder to provide quick fixes for more complex issues detected
by a SAST tool than a linter. Two participants suggested that the IDE prototype should forbid
or auto-cancel multiple scans on the same commit, since “it’s a wasted action”.

Even though most developers were aware that the cloud-based SAST tool performs a deeper
analysis and acknowledged that the analysis takes longer, they still complained about the
waiting time and that findings and code ran out of sync. This suggests that using the
same visual components for the cloud-based analysis that are also used by lightweight local
static analyzers (e.g., problem-list windows, error markers on code) may create unrealistic
expectations about the behavior of the tool.

6.5.3.2 RQ7: How did developers think the IDE prototype impacted their work-
flows?

As we show for RQ3 the IDE prototype impacts developers’ behavior in fixing code, the qualita-
tive data also indicates the same. Although developers interacted with the same analysis engine,

152

Chapter 6. IDE Support for Cloud-based SAST Tools

they approached the tasks differently in the two conditions. A participant used a metaphor to
express the different feelings:

“The thing in the AWS Console felt like integration test. Having it in the IDE was
like unit test.”

In the AWS Console, because it is in a browser, participants felt a disconnect “between
running the analysis and editing”. A few participants perceived the list of findings as a task list
as G9 told us:

“I saw the task list and I went to work on that code. It just didn’t click for me that
I can go back to the AWS Console and rerun the analysis.”

They felt that they were supposed to pick a workflow in which they would only rescan once they
addressed all issues. Not seeing the result immediately was less frustrating, because it was clear
that there was no synchronization. While some participants chose to address all issues at once,
others felt their workflows were paused in the Web condition as G29 told us:

“I was somehow encouraged to wait to see what happens. I felt that if go back working,
I would not be aware when the execution finishes.”

Using the IDE prototype, without switching between the browser and the IDE, some developers
rescanned more often. A participant who addressed all issues at once in the Web condition said:

“(In the IDE) It was like I saw the thing turned red, I fixed it, kept iterating on
it until error-free, then I move on to the next one. [...] So I was expecting some
feedback. I changed something, hit on ‘Run Repository Analysis’[...]”

Another participant told us he felt encouraged to change code and rescan even before the previous
scan is completed such that he could work more efficiently.

Using the IDE prototype, developers wanted to validate their fixes more often and felt en-
couraged not to wait for the analysis execution, but continue working on fixing other issues.

Despite of all the problems identified in the IDE prototype, many participants expressed
that they would prefer the IDE support to interact with cloud-based SAST tools. G21 told us:

“I would prefer IDE, because less time wasted having to go through other screens. I
can push code, and let analysis run on branch, while continuing workflow in the IDE.
Less context switching.”

G1 also preferred the prototype but wished it was more interactive:

“It runs analysis on the file you are working on and tells you if you fixed it correctly
or not.”

Also G22 said:

“The IDE integration is the better path, because it’s closer to the activity being per-
formed: writing code.”

Despite the delay of the analysis, he would “much rather see a list of suggested problems/fixes
in my editor than changing screens back-and-forth.”

153

6.6 Threats To Validity

6.6 Threats To Validity

External Validity: We conducted our study with developers of a single company. Among
them, only a few participants were female. This may lead to limited generalizability of our find-
ings to the whole developer community. However, the participants were located in 9 different
countries, have years of professional experience, and work on different kinds of products. Fur-
thermore, we only studied the effect of IDE integration for one cloud-based SAST tool and one
IDE. As we demonstrated, the response time of the SAST tool is a major factor, so our findings
cannot be generalized to tools that are significantly faster or slower. A follow-up study can de-
termine this effect by artificially introducing delays when retrieving findings. Our prototype uses
MagpieBridge [LDB19] (see Chapter 5) which is based on language server protocol [Mic16a]
that integrates with most modern IDEs, so we expect the impact of the IDE choice to be minimal,
but developers’ familiarity with an IDE could affect the study.

We only compared the IDE solution to the web-based solution of CodeGuru Reviewer
regarding repository analysis. We did not consider the impact on development lifecycle man-
agement with the issue board in the web-based solution. It is likely that project managers and
team leaders would have a higher preference for the web-based solution. Moreover, we did not
consider cost, security, and trust. Some participants were critical about pushing code for a res-
can and proposed to hide the action, however, real customers of CodeGuru Reviewer might
not want their code to be uploaded silently due to security concerns.

Internal Validity: The first threat is the session time. Some participants told us they felt
stressed and they did not have enough time to fix all issues. While the available time limited
the performance of some participants, it also simulated the pressure of software development on
tight deadlines, e.g. before releases. We also observed that some participants were less motivated
to fix code, but more interested in playing with the features of the tools.

Another threat was attrition. We had four developers (who did the first interviews with us)
not attend the second-round interviews and two (their data are not included in this work) did
not participate in the usability test. We are aware that our findings are likely to be based on
a biased sample of developers who have higher motivation to use static analysis tools or cloud
services. Moreover, the tasks in the usability test were artificial. Due to unfamiliarity with the
projects or the used Java libraries, some participants may have performed worse than in real
development situations. However, we only selected developers who have professional experience
in Java and the majority (n=25/32) of them used AWS SDK before.

Regarding the impact of developers’ familiarity with the IDE, we applied Wilcoxon-singed
rank test to the sample grouped by tasks and grouped by the experience with VS Code, the
result indicated there was no significant difference between the groups. Regarding the issues
detected by CodeGuru Reviewer, they were all true positives.

Lastly, the IDE prototype was not designed by professional UX designers, but researchers.
It is likely that developers would perceive a significant improvement of the usability using a
professionally designed IDE solution in comparison to the web-based solution. Although we
were comparing a prototype to a web application with real customers, our result indicates that
the prototype is not worse.

6.7 Related Work

The usability of static analysis tools has been studied by many researchers. Johnson et al.
interviewed experienced developers to understand why developers were not widely using static
analysis tools [JSMB13]. They found out that false positives and bad warnings were the major

154

Chapter 6. IDE Support for Cloud-based SAST Tools

reasons for developers’ dissatisfaction. Christakis and Bird surveyed developers at Microsoft
to understand what developers want and need from static analysis tools [CB16]. Their study
shows that developers would like static analysis tools to detect more critical issues for them such
as security or concurrency issues and display the findings directly in their IDEs. Beller et al.
studied the usage of static analysis tools on open source projects [BBMZ16]. They found out
that most open source developers only use static tools sporadically and they need to be made
aware of the benefits of using these tools. Vassallo et al. studied developers’ behavior using
static analysis tools over different development stages [VPP+18]. They found out that severity
is the most important factor for developers in prioritizing issues to fix, which was confirmed in
our study. Steidl et al. suggested to prioritize issues that are easy to refactor [SE14]. Their
study indicates prioritizing by low refactoring costs matches greatly the developers’ opinions.
In our study, we also heard expectation of such prioritization mechanism from some developers.
A more recent study from Nguyen Quang Do et al. took a user-centric approach to under-
stand why developers use static analysis tools and which decision they make when using these
tools [DWA20]. According to their study with developers at Software AG, IDEs are still the
ideal reporting locations wanted by developers. However, we observed that there exists a dis-
connect between the typical usage of cloud-based SAST tools in CI/CD and developers’ wish
to interact with them earlier in the lifecycle, in their IDEs. Our work focuses on exploring how
IDE support for cloud-based SAST tools that are typically used in CI/CD should be designed.
We approached the exploration from developers’ perspective with a user study. We found out
that developers expected more than just seeing the findings of these tools in their IDEs.

In recent years, we see an increased interest in studies that apply static analysis tools at
scale [Bol16, KBL16, ZSO+17, VPBG18, IMW19]. Facebook’s static analyzer infer has detected
over 100,000 issues that have been resolved by Facebook’s developers since 2014 [DFLO19]. As
reported by Google [SAE+18], their static analysis platform Tricorder could analyze 50,000 code
review changes per day. More than 5,000 issues per day were tagged to be fixed by developers.
These studies discuss tools that are integrated in the code review process. Our work builds on
the results of these papers and asks the question how we can give developers access to cloud-
based SAST tools directly through their IDEs, and if this improves developers’ workflows. We
share challenges and lessons learned in the exploration that can be beneficial for suppliers that
wish to build such IDE support.

Many researchers have studied the impact of cloud services on the user experience [WTK+08,
UKJS10]. Kaisa Väänänen-Vainio-Mattila et al. studied the user perceptions of Wow—a positive
user experience when using cloud services [VPP+11]. They proposed a few design implications
for achieving Wow such as pushing dynamic features to keep the user stimulated. Tang et
al. interviewed users of file synchronizing and sharing services to understand the cloud-based
user experience [TBM13]. They found out that users’ understanding and usage of cloud func-
tionalities are limited by their existing practices. Similarly, we also learned that developers’
expectations of IDE support for cloud-based SAST tools were affected by their awareness of the
limitations of these tools, and their previous experience with lightweight analysis tools. Devel-
opers’ overexpectations hugely impacted the perceived usability when interacting with our IDE
prototype. Through a usability test, we identified important design elements and mechanisms
required for a better tool support.

6.8 Conclusion

To investigate how IDE support for cloud-based SAST tools should be designed, we conducted
a multiple-staged user study. We first interviewed developers at AWS to understand their
expectations. Developers’ feedback indicates that they expected the IDE support for cloud-

155

6.8 Conclusion

based analyses to behave similar to the lightweight static analysis tools they already use in
their daily work. Their responses also indicate that they have limited understanding of the
capabilities and limitations of SAST tools. Guided by the user interviews, we developed an IDE
prototype that was positively confirmed by the same group of developers. We tested this IDE
prototype on 32 developers. This usability test showed that allowing developers to interact with
a cloud-based SAST tool through their IDE significantly increased their interaction with the
tool, i.e., they ran the analysis much more frequently than using the web-based solution. This
might impact the code quality in a long time span. Moreover, we found promising reduction
in fix time even in our small-size study. A larger longitudinal study on this impact should be
conducted in the future. However, we also found out that reusing the same visual components
for the cloud-based analysis that are also used by lightweight static analyzers (e.g., problem-list
windows, error markers on code) created confusion and that developers need clear visual cues
to understand the asynchronous nature of cloud-based analyses.

156

Conclusion and Future Work

7
Designing static analysis tools for the real-world is challenging. Analysis ideally should be
sound, precise and scale to large applications. Soundness requires the analysis model all possible
executions of the program under analysis and not miss issues. To achieve this, analyses are
often over-approximated, which means analyses might model program behaviors that could
never happen. In contrast, precision requires analyses to avoid modeling of such unrealizable
behaviors and produce false positives as less as possible. However, to make analysis scale, people
often opt to lower the precision since it is widely perceived that a more precise analysis often
needs more time to run.

Finding the best trade-off between precision, soundness, and scalability of a static taint anal-
ysis requires good benchmarks to be tested on. However, common benchmarks for static taint
analysis are micro benchmarks, which are not representative for real-world applications in terms
of size and complexity as we see in Chapter 2. Analyses that work well on micro benchmarks
are often less effective on real-world apps. To fill this gap, we contributed TaintBench—the
first real-world malware benchmark suite with a well-documented ground truth for Android
taint analysis in Chapter 2. TaintBench allows us to evaluate state-of-the-art Android taint
analyses tools and reveals insights of these tools that have not been gained with micro bench-
marks. We found evaluated tools have very low recall on TaintBench and new releases of these
tools often performed worse than old ones. Although FlowDroid produces the best results on
TaintBench, our in-depth investigation reveals that incomplete call graph modeling is one of
the main reasons it failed to detect 35% of the malicious taint flows in TaintBench. This find-
ing leads to our second contribution of this thesis in Chapter 3—GenCG, which is an approach
to build more complete call graphs. We show our GenCG approach is general in the sense that
it is not limited to any framework or any specific analysis tool. Experiments on both Android
and Spring frameworks with a client taint analysis show our approach enables detection of more
real-world taint flows without introducing much noise (false positives).

In terms of improving precision of static taint analyses, the third contribution of this thesis
addresses path-sensitivity, which is one of the least considered sensitivities by existing taint anal-
ysis approaches. Chapter 4 presents an approach COVA that computes partial path constraints
that can be used to enhance results produced by a client analysis which is not path-sensitive.
Client analyses can use COVA to eliminate false positives due to unrealizable path constraints,
as well as explain under which conditions an issue might happen. Using COVA we conducted a
qualitative study of taint flows from a large set of real-world android apps from popular Android
app markets. The qualitative data we collected in this study explains circumstances under which
taint flows may actually occur. This is a start toward finding concrete executions to validate

157

static findings. Our proof-of-concept extension of COVA demonstrates the feasibility of using
COVA to generate concrete user inputs to drive execution to desired program points.

Making sound, precise and scalable static analysis is unfortunately not enough for the real
world. Often, software developers are confronted with the task of learning and applying a large
number of technologies in far too short a time. Using these technologies securely represents a
big hurdle. Often, security is not explicitly tested. Despite the fact that security analyses like
static taint analysis can help here, current analysis tools are unfortunately not well received
by developers. There are only few analyses integrated into tools that are commonly used by
developers, i. e., in IDEs. Many analyses are produced in academia and stay in academia, which
is a huge waste of efforts. Even with the existence of IDE integration, most analyses target only
one specific IDE due to the sheer amount of engineering effort involved. To make static analysis
more accessible for developers, researchers need ways to bring them into IDEs more easily. Our
fourth contribution in Chapter 5 is MagpieBridge, which provides a solution to integrate static
analyses into multiple IDEs with less effort in comparison to traditional approaches. Although
the focus of this thesis is static taint analysis, we designed MagpieBridge to be generally
applicable and demonstrate its generalizability with multiple analyses from both academia and
industry.

As MagpieBridge builds a bridge between static analyses and IDEs, the next step is to
understand what specific wishes developers have for IDE integration of static analyses. In
collaboration with scientists from Amazon Web Services, the last contribution of this thesis in
Chapter 6 explores how IDE support for a purely cloud-based static analysis, as is typically used
in CI/CD, should be designed to meet the expectations of developers. We wanted to enable usage
of static analyses earlier in the software development lifecycle, i. e., from testing/deployment to
development. We conducted a multiple-staged user study with software developers at Amazon
Web Services. In this study, we built a prototype of the IDE support for a cloud-based SAST
tool—Amazon CodeGuru Reviewer and evaluated this prototype with software developers with
a usability test. The usability test showed that allowing developers to interact with a SAST tool
through their IDE significantly increased their interactions with the tool, which might positively
impact the code quality in a long time span. The challenges and lessons learned in this study
opens avenues to future research directions. While developers expect quick validation of code
fixes in their IDEs, existing SAST tools are usually not able to give real-time feedback. This
implies the need of incremental analysis on code changes.

In conclusion, this thesis tackles three existing problems (see Chapter 1) to improve real-
world applicability of static taint analysis. We hope that the presented benchmarks, approaches,
their implementations and shared insights can help static taint analysis designers to create better
analyses, and foster the adaption of static taint analyses by software developers in building more
secure software. We end this thesis by discussing a few research directions for the future:

• In benchmarking Android taint analysis tools with TaintBench, we saw taint flows
in real-world applications are often consists of multiple sub-flows in different program-
ming languages (Java, JavaScript, C/C++). Combining and composing taint analysis
approaches for different languages to detect such cross-language taint flows is an emerging
research direction.

• With COVA we discovered the usefulness of path constraints in refining Android taint
analysis results. However, we still did not fully solve the scalability problem in obtaining
path-sensitivity. A possible improvement is to make the analysis in COVA on demand.
As we demonstrate with the extended COVA, it is promising to use it for target testing
or guided fuzzing for Android applications. Currently, there are only few approaches
for Android applications [RATP17, AYS+21] and it is even less explored for Java web

158

Chapter 7. Conclusion and Future Work

applications [MAHF18].

• Our GenCG approach enables static analysis to analyze more reachable code, while it
is still limited by not modeling reflections through configuration files that are used by
framework-based applications. We believe incorporating actual execution traces into our
approach can help to produce more sound and precise call graphs.

• When interacting with security analysis tools from an IDE, developers expect them to be
as responsive as possible. They want to get analysis results instantly for code they are
editing. However, making whole-program analysis to terminate in a few seconds is still very
challenging for modern softwares. In recent years, there have been a few approaches doing
incremental analysis [AB14, SEB21, SEV20, SCS21], however, analysis tools in industry
rarely do so [EN08]. It is an interesting research question whether the proposed approaches
are suitable for industry code and how efficient they would be.

159

160

Bibliography

[AB14] Steven Arzt and Eric Bodden. Reviser: efficiently updating ide-/ifds-based data-
flow analyses in response to incremental program changes. In Pankaj Jalote,
Lionel C. Briand, and André van der Hoek, editors, 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
pages 288–298. ACM, 2014.

[AB16] Steven Arzt and Eric Bodden. Stubdroid: automatic inference of precise data-
flow summaries for the android framework. In Laura K. Dillon, Willem Visser,
and Laurie A. Williams, editors, Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages
725–735. ACM, 2016.

[ABKT16] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. Andro-
zoo: collecting millions of android apps for the research community. In Proceedings
of the 13th International Conference on Mining Software Repositories, MSR 2016,
Austin, TX, USA, May 14-22, 2016, pages 468–471, 2016.

[AFK+20] Anastasios Antoniadis, Nikos Filippakis, Paddy Krishnan, Raghavendra Ramesh,
Nicholas Allen, and Yannis Smaragdakis. Static analysis of java enterprise ap-
plications: frameworks and caches, the elephants in the room. In Alastair F.
Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 794–807. ACM, 2020.

[AKG+15] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and
E. Bodden. Mining apps for abnormal usage of sensitive data. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 1, pages
426–436, 2015.

[AL13] Karim Ali and Ondrej Lhoták. Averroes: Whole-program analysis without the
whole program. In Giuseppe Castagna, editor, ECOOP 2013 - Object-Oriented
Programming - 27th European Conference, Montpellier, France, July 1-5, 2013.
Proceedings, volume 7920 of Lecture Notes in Computer Science, pages 378–400.
Springer, 2013.

[Ama17] Amandroid. https://mvnrepository.com/artifact/com.github.arguslab/
amandroid_2.12/3.1.2, November 2017. Accessed: 2021-08-03.

[Ama18] Amandroid*. https://mvnrepository.com/artifact/com.github.arguslab/
amandroid_2.12/3.2.0, December 2018. Accessed: 2021-08-03.

161

https://mvnrepository.com/artifact/com.github.arguslab/amandroid_2.12/3.1.2
https://mvnrepository.com/artifact/com.github.arguslab/amandroid_2.12/3.1.2
https://mvnrepository.com/artifact/com.github.arguslab/amandroid_2.12/3.2.0
https://mvnrepository.com/artifact/com.github.arguslab/amandroid_2.12/3.2.0

[And11] Androguard. https://github.com/androguard/androguard, 2011. Accessed:
2021-08-03.

[ANHY12] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated
concolic testing of smartphone apps. In 20th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC,
USA - November 11 - 16, 2012, page 59, 2012.

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel.
Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of PLDI. ACM, 2014.

[ARHB15] Steven Arzt, Siegfried Rasthofer, Robert Hahn, and Eric Bodden. Using targeted
symbolic execution for reducing false-positives in dataflow analysis. In Anders
Møller and Mayur Naik, editors, Proceedings of the 4th ACM SIGPLAN Interna-
tional Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2015,
Portland, OR, USA, June 15 - 17, 2015, pages 1–6. ACM, 2015.

[Arz16] Steven Arzt. Static Data Flow Analysis for Android Applications. PhD thesis,
Technische Universität Darmstadt, Dec 2016.

[ASH+14] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. DREBIN: effective and explainable detection of android malware in your
pocket. In Proceedings of the 21st NDSS. The Internet Society, 2014.

[Atl20] Atlassian. Gitflow workflow, 2020. Accessed: 2021-08-03.

[AYS+21] Yousra Aafer, Wei You, Yi Sun, Yu Shi, Xiangyu Zhang, and Heng Yin. An-
droid smarttvs vulnerability discovery via log-guided fuzzing. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021.

[Bae21] Baeldung. Guide to spring autowried. https://www.baeldung.com/
spring-autowire, 2021. Accessed: 2021-08-03.

[BBMZ16] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. Analyz-
ing the state of static analysis: A large-scale evaluation in open source software. In
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, pages
470–481. IEEE Computer Society, 2016.

[BGC15] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: a
general approach to android framework modeling. In Anders Møller and Mayur
Naik, editors, Proceedings of the 4th ACM SIGPLAN International Workshop on
State Of the Art in Program Analysis, SOAP@PLDI 2015, Portland, OR, USA,
June 15 - 17, 2015, pages 19–25. ACM, 2015.

[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump,
Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas
VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo bench-
marks: java benchmarking development and analysis. In Proceedings of the 21th
OOPSLA. ACM, 2006.

162

https://github.com/androguard/androguard
https://www.baeldung.com/spring-autowire
https://www.baeldung.com/spring-autowire

Chapter 7. Conclusion and Future Work

[BKKL+20] Manuel Benz, Erik Krogh Kristensen, Linghui Luo, Nataniel P. Borges Jr., Eric
Bodden, and Andreas Zeller. Heaps’n leaks: How heap snapshots improve android
taint analysis. In Proceedings of the 42nd International Conference on Software
Engineering, 2020.

[BLYW17] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. Collusive
data leak and more: Large-scale threat analysis of inter-app communications. In
Proceedings of AsiaCCS. ACM, 2017.

[Bol16] Claude Bolduc. Lessons learned: Using a static analysis tool within a contin-
uous integration system. In 2016 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pages 37–40. IEEE, 2016.

[Bro96] John Brooke. Sus: a “quick and dirty’usability. Usability evaluation in industry,
page 189, 1996.

[BS09] Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to
analysis: better together. In Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July
19-23, 2009, pages 1–12, 2009.

[BS18] Zohreh Bohluli and Hamid Reza Shahriari. Detecting privacy leaks in android
apps using inter-component information flow control analysis. In Proceedings of
the 15th ISCISC. IEEE, 2018.

[BSS+11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Tam-
ing reflection: Aiding static analysis in the presence of reflection and custom class
loaders. In Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic, editors,
Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 241–250. ACM, 2011.

[BTR+13] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and
Mira Mezini. Spllift: statically analyzing software product lines in minutes instead
of years. In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation (PLDI), pages 355–364, 2013.

[CB16] Maria Christakis and Christian Bird. What developers want and need from pro-
gram analysis: An empirical study. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2016, page 332–343,
New York, NY, USA, 2016. Association for Computing Machinery.

[CDvfsd16] Frederic Gagnon Christian Dietrich and various free software developers. Eclipse
lsp4j. https://projects.eclipse.org/proposals/eclipse-lsp4j, 2016. Ac-
cessed: 2021-08-03.

[CGK12] Gary Charness, Uri Gneezy, and Michael A Kuhn. Experimental methods:
Between-subject and within-subject design. Journal of Economic Behavior &
Organization, 81(1):1–8, 2012.

[Che06] Checkmarx. Checkmarx, 2006. Accessed: 2021-08-03.

[CHN16] Nguyen Cam, Pham Hau, and Tuan Nguyen. Android security analysis based on
inter-application relationships. In Information Science and Applications (ICISA)
2016, pages 689–700. Springer, 01 2016.

163

https://projects.eclipse.org/proposals/eclipse-lsp4j

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented
design. Transactions on Software Engineering IEEE, 1994.

[CKBG18] Paolo Calciati, Konstantin Kuznetsov, Xue Bai, and Alessandra Gorla. What did
really change with the new release of the app? In Proceedings of the 15th Inter-
national Conference on Mining Software Repositories, MSR 2018, Gothenburg,
Sweden, May 28-29, 2018, pages 142–152, 2018.

[CLHS17] Hongyi Chen, Ho-fung Leung, Biao Han, and Jinshu Su. Automatic privacy
leakage detection for massive android apps via a novel hybrid approach. In IEEE
International Conference on Communications, ICC 2017, Paris, France, May 21-
25, 2017, pages 1–7, 2017.

[Con12] Contagio Mobile. http://contagiominidump.blogspot.com, 2012. Accessed:
2021-08-03.

[Con18] Contagio Mobile Malware, 2018. Accessed: 2021-08-03.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Commun. ACM, 56(2):82–90, 2013.

[DAL+17a] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson R. Murphy-Hill. Cheetah: just-in-time taint analysis for android
apps. In Proceedings of the 39th International Conference on Software Engineer-
ing, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume,
pages 39–42, 2017.

[DAL+17b] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson R. Murphy-Hill. Just-in-time static analysis. In Tevfik Bultan
and Koushik Sen, editors, Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10
- 14, 2017, pages 307–317. ACM, 2017.

[DAMvfsd76] Guy L. Steele Jr. David A. Moon and various free software developers. Emacs.
https://www.gnu.org/software/emacs, 1976. Accessed: 2021-08-03.

[DD12] Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis for java
with strong updates. In James Noble, editor, ECOOP 2012 - Object-Oriented
Programming - 26th European Conference, Beijing, China, June 11-16, 2012.
Proceedings, volume 7313 of Lecture Notes in Computer Science, pages 665–687.
Springer, 2012.

[DEB16] Lisa Nguyen Quang Do, Michael Eichberg, and Eric Bodden. Toward an auto-
mated benchmark management system. In Proceedings of the 5th SOAP@PLDI.
ACM, 2016.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In Proceedings of the ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24, 1994,
pages 230–241, 1994.

[DFLO19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
Scaling static analyses at facebook. Commun. ACM, 62(8):62–70, July 2019.

164

http://contagiominidump.blogspot.com
https://www.gnu.org/software/emacs

Chapter 7. Conclusion and Future Work

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, pages 337–340, 2008.

[Doo09] Doop. http://doop.program-analysis.org, 2009. Accessed: 2021-08-03.

[Dro16] DroidBench 3-0. https://github.com/secure-software-engineering/
DroidBench/tree/develop, September 2016. Accessed: 2021-08-03.

[DSAR18] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne: anal-
ysis for machine learning programs. In Justin Gottschlich and Alvin Cheung,
editors, Proceedings of the 2nd ACM SIGPLAN International Workshop on Ma-
chine Learning and Programming Languages, MAPL@PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 1–10. ACM, 2018.

[DtJd20] JADX: Dex to Java decompiler. https://github.com/skylot/jadx, 2020. Ac-
cessed: 2021-08-03.

[DWA20] Lisa Nguyen Quang Do, James Wright, and Karim Ali. Why do software de-
velopers use static analysis tools? a user-centered study of developer needs and
motivations. IEEE Transactions on Software Engineering, 2020.

[EB10] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than
the quick and dirty way. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion, pages 307–309. ACM, 2010.

[EGC+14] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick D. McDaniel, and Anmol Sheth. Taintdroid: an information flow tracking
system for real-time privacy monitoring on smartphones. Communications of the
ACM, 2014.

[EGH+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick D. McDaniel, and Anmol N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Trans. Comput. Syst., 32(2):5:1–5:29, 2014.

[EHMG15] Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid Glanz. Hidden truths
in dead software paths. In Proceedings of the 10th ESEC/FSE. ACM, 2015.

[EN08] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static anal-
ysis tools. Electron. Notes Theor. Comput. Sci., 217:5–21, 2008.

[F-D20] F-Droid. https://F-Droid.org, 2020. Accessed: 2021-08-03.

[Fac15] Facebook. Facebook infer. https://fbinfer.com, 2015. Accessed: 2021-08-03.

[FD12] Stephen Fink and Julian Dolby. Wala–the tj watson libraries for analysis, 2012.

[FDC04] Stephen Fink, Julian Dolby, and L Colby. Semi-automatic j2ee
transaction configuration. https://dominoweb.draco.res.ibm.com/
32e774866c89774a85256f0400669309.html, 2004. Accessed: 2021-08-03.

165

http://doop.program-analysis.org
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/skylot/jadx
https://F-Droid.org
https://fbinfer.com
https://dominoweb.draco.res.ibm.com/32e774866c89774a85256f0400669309.html
https://dominoweb.draco.res.ibm.com/32e774866c89774a85256f0400669309.html

[Flo17] FlowDroid. https://github.com/secure-software-engineering/
soot-infoflow-android/wiki, April 2017. Accessed: 2021-08-03.

[Flo19] FlowDroid*. https://github.com/secure-software-engineering/
FlowDroid/releases/tag/v2.7.1, January 2019. Accessed: 2021-08-03.

[FMC06] Jennifer Fereday and Eimear Muir-Cochrane. Demonstrating rigor using thematic
analysis: A hybrid approach of inductive and deductive coding and theme devel-
opment. International Journal of Qualitative Methods, 5(1):80–92, 2006.

[Fou12] JS Foundation. Appium. https://appium.io, 2012. Accessed: 2021-08-03.

[FYD+06] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
Effective typestate verification in the presence of aliasing. In Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, IS-
STA 2006, Portland, Maine, USA, July 17-20, 2006, pages 133–144, 2006.

[GBJ06] Greg Guest, Arwen Bunce, and Laura Johnson. How many interviews are enough?
an experiment with data saturation and variability. Field Methods, 18(1):59–82,
2006.

[Gee20] GeeksforGeeks. Top 10 most popular java frameworks
for web development. https://www.geeksforgeeks.org/
top-10-most-popular-java-frameworks-for-web-development, 2020.
Accessed: 2021-08-03.

[Git14] GitHub. Atom. https://atom.io, 2014. Accessed: 2021-08-03.

[Git18] Gitpod. Gitpod. https://www.gitpod.io, 2018. Accessed: 2021-08-03.

[Git19a] GitHub. Codeql. https://codeql.github.com/docs/codeql-overview, 2019.
Accessed: 2021-08-03.

[Git19b] GitHub. Lgtm, 2019. Accessed: 2021-08-03.

[Git20] GitHub. Github actions. https://docs.github.com/en/actions, 2020. Ac-
cessed: 2021-08-03.

[GKP+15] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. Information flow analysis of android applica-
tions in droidsafe. In Proceedings of the 22nd NDSS. The Internet Society, 2015.

[GM14] Xi Ge and Emerson R. Murphy-Hill. Manual refactoring changes with automated
refactoring validation. In 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 1095–1105, 2014.

[Gmb13] RIGS IT GmbH. Xanitizer. https://www.rigs-it.com/xanitizer, 2013. Ac-
cessed: 2021-08-03.

[Goo12] Google. Google play services. https://developers.google.com/android/
reference/packages, 2012. Accessed: 2021-08-03.

[Goo13a] Google. Android studio. https://developer.android.com/studio, 2013. Ac-
cessed: 2021-08-03.

166

https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.7.1
https://github.com/secure-software-engineering/FlowDroid/releases/tag/v2.7.1
https://appium.io
https://www.geeksforgeeks.org/top-10-most-popular-java-frameworks-for-web-development
https://www.geeksforgeeks.org/top-10-most-popular-java-frameworks-for-web-development
https://atom.io
https://www.gitpod.io
https://codeql.github.com/docs/codeql-overview
https://docs.github.com/en/actions
https://www.rigs-it.com/xanitizer
https://developers.google.com/android/reference/packages
https://developers.google.com/android/reference/packages
https://developer.android.com/studio

Chapter 7. Conclusion and Future Work

[Goo13b] Google. Espresso test framework. https://developer.android.com/training/
testing/espresso, 2013. Accessed: 2021-09-09.

[Goo13c] Google. Ui automator. https://developer.android.com/training/testing/
ui-automator, 2013. Accessed: 2021-09-09.

[Goo18a] Google. Device compatibility, 2018. Accessed: 2021-08-03.

[Goo18b] Google. Platform Versions, 2018. Accessed: 2021-08-03.

[Goo21] Google. Package name in android manifest. https://developer.android.com/
guide/topics/manifest/manifest-element.html#package, 2021. Accessed:
2021-08-03.

[Gra05] GrammaTech. Codesonar. https://www.grammatech.com/products/
codesonar, 2005. Accessed: 2021-08-03.

[Gra18] GrammaTech. Static analysis results: A format and a pro-
tocol: Sarif and sasp. http://blogs.grammatech.com/
static-analysis-results-a-format-and-a-protocol-sarif-sasp, 2018.
Accessed: 2021-08-03.

[Gro05] JSON-RPC Working Group. Json-rpc. https://www.jsonrpc.org, 2005. Ac-
cessed: 2021-08-03.

[Gro07] LLVM Developer Group. Clang static analyzer. https://clang-analyzer.llvm.
org, 2007. Accessed: 2021-08-03.

[GS15] Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic
security. International Journal of Information Security, 14(3):263–287, Jun 2015.

[GS17] Neville Grech and Yannis Smaragdakis. P/taint: Unified points-to and taint
analysis. Proc. ACM Program. Lang., 1(OOPSLA), October 2017.

[GSS68] Barney G Glaser, Anselm L Strauss, and Elizabeth Strutzel. The discovery of
grounded theory; strategies for qualitative research. Nursing research, 17(4):364,
1968.

[Hau21] Fynn Hauptmeier. Targeted testing input generation for android applications.
Master’s thesis, Paderborn University, 2021.

[HDMD15] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise
taint analysis for android. In Proceedings of ISSTA. ACM, 2015.

[HP07] David Hovemeyer and William Pugh. Finding more null pointer bugs, but not
too many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’07, pages 9–14,
New York, NY, USA, 2007. ACM.

[HQ08] Sublime HQ. Sublime text. https://www.sublimetext.com, 2008. Accessed:
2021-08-03.

[HS09] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs.
International Journal of Information Security, 8(6):399–422, December 2009.

167

https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/guide/topics/manifest/manifest-element.html#package
https://developer.android.com/guide/topics/manifest/manifest-element.html#package
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://www.jsonrpc.org
https://clang-analyzer.llvm.org
https://clang-analyzer.llvm.org
https://www.sublimetext.com

[HZT+14] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. Asdroid:
detecting stealthy behaviors in android applications by user interface and program
behavior contradiction. In Proceedings of the 36th ICSE. ACM, 2014.

[IBM98] IBM. Ibm websphere. https://www.ibm.com/cloud/
websphere-application-platform, 1998. Accessed: 2021-08-03.

[IBM07] IBM. Appscan. https://www.hcltechsw.com/appscan, 2007. Accessed: 2021-
08-03.

[IF01] IBM and Eclipse Foundation. Eclipse. https://www.eclipse.org, 2001. Ac-
cessed: 2021-08-03.

[IMW19] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. How do developers act
on static analysis alerts? an empirical study of coverity usage. In 2019 IEEE
30th International Symposium on Software Reliability Engineering (ISSRE), pages
323–333. IEEE, 2019.

[Jet01] JetBrains. Intellij. https://www.jetbrains.com/idea, 2001. Accessed: 2021-
08-03.

[Jet10] JetBrains. Pycharm. https://www.jetbrains.com/pycharm, 2010. Accessed:
2021-08-03.

[JSMB13] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. Why don’t software developers use static analysis tools to find bugs? In
David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pages 672–681. IEEE Computer Society, 2013.

[KBL16] Rahul Kumar, Chetan Bansal, and Jakob Lichtenberg. Static analysis using the
cloud. arXiv preprint arXiv:1610.08198, 2016.

[Ken16] Joseph Chan Joo Keng. Automated testing and notification of mobile app pri-
vacy leak-cause behaviours. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, pages 880–883, 2016.

[Ker21] Jörn Kersten. Luca-app – mehr kosten als nutzen? https://www.
daserste.de/information/wirtschaft-boerse/plusminus/sendung/sr/
sendung-vom-09-06-2021-luca-app-100.html, 2021. Accessed: 2021-09-21.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In Conference
Record of the ACM Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, October 1973, pages 194–206, 1973.

[KNR+17] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, et al. Cog-
nicrypt: supporting developers in using cryptography. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, pages
931–936. IEEE Press, 2017.

[KWJB13] Joseph Chan Joo Keng, Tan Kiat Wee, Lingxiao Jiang, and Rajesh Krishna
Balan. The case for mobile forensics of private data leaks: towards large-scale

168

https://www.ibm.com/cloud/websphere-application-platform
https://www.ibm.com/cloud/websphere-application-platform
https://www.hcltechsw.com/appscan
https://www.eclipse.org
https://www.jetbrains.com/idea
https://www.jetbrains.com/pycharm
https://www.daserste.de/information/wirtschaft-boerse/plusminus/sendung/sr/sendung-vom-09-06-2021-luca-app-100.html
https://www.daserste.de/information/wirtschaft-boerse/plusminus/sendung/sr/sendung-vom-09-06-2021-luca-app-100.html
https://www.daserste.de/information/wirtschaft-boerse/plusminus/sendung/sr/sendung-vom-09-06-2021-luca-app-100.html

Chapter 7. Conclusion and Future Work

user-oriented privacy protection. In Asia-Pacific Workshop on Systems, APSys
’13, Singapore, Singapore, July 29-30, 2013, pages 6:1–6:7, 2013.

[LBB+15] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. Iccta: Detecting inter-component privacy leaks in android apps. In
Proceedings of the 37th ICSE. IEEE Computer Society, 2015.

[LBK+14] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick D. McDaniel. I know what
leaked in your pocket: uncovering privacy leaks on android apps with static taint
analysis. CoRR, abs/1404.7431, 2014.

[LBLH11a] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot frame-
work for java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), volume 15, page 35, 2011.

[LBLH11b] Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. The Soot frame-
work for Java program analysis: a retrospective. Cetus ’11, 2011.

[LBLH11c] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot frame-
work for Java program analysis: a retrospective. In Proceedings of CETUS, 2011.

[LBP+17] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. Static analysis of
android apps: A systematic literature review. Inf. Softw. Technol., 88:67–95,
2017.

[LBS19] Linghui Luo, Eric Bodden, and Johannes Späth. A qualitative analysis of android
taint-analysis results. In 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019,
pages 102–114. IEEE, 2019.

[LDB19] Linghui Luo, Julian Dolby, and Eric Bodden. Magpiebridge: A general approach
to integrating static analyses into ides and editors (tool insights paper). In Alas-
tair F. Donaldson, editor, 33rd European Conference on Object-Oriented Program-
ming, ECOOP 2019, July 15-19, 2019, London, United Kingdom, volume 134
of LIPIcs, pages 21:1–21:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[LDR16] Sungho Lee, Julian Dolby, and Sukyoung Ryu. Hybridroid: static analysis frame-
work for android hybrid applications. In David Lo, Sven Apel, and Sarfraz Khur-
shid, editors, Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016,
pages 250–261. ACM, 2016.

[LH03] Ondrej Lhoták and Laurie J. Hendren. Scaling java points-to analysis using
SPARK. In Görel Hedin, editor, Compiler Construction, 12th International Con-
ference, CC 2003, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceed-
ings, volume 2622 of Lecture Notes in Computer Science, pages 153–169. Springer,
2003.

169

[LKB17] Max Lillack, Christian Kastner, and Eric Bodden. Tracking Load-time Configu-
ration Options. IEEE Transactions on Software Engineering, 5589(c):1–1, 2017.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java
applications with static analysis. In Proceedings of the 14th USENIX Security
Symposium. USENIX Association, 2005.

[LPP+21] Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko, Mar-
tin Mory, Eric Bodden, Ben Hermann, and Fabio Massacci. Taintbench: Auto-
matic real-world malware benchmarking of android taint analyses. Empirical
Software Engineering, 2021.

[LSS+15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták,
José Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: a manifesto.
Commun. ACM, 58(2):44–46, 2015.

[LSSB21a] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. Ide support for
cloud-based static analyses. In Proceedings of the the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021, 2021.

[LSSB21b] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. Test applications
and issue list, 2021. Accessed: 2021-08-03.

[Luo21] Linghui Luo. A general approach to modelling java framework behaviors. In The
ACM Student Research Competition at the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), 2021, 2021.

[MAHF18] Hongpeng Man, Jing An, Wei Huang, and Wenqing Fan. Jsefuzz: Vulnerability
detection method for java web application. In 2018 3rd International Conference
on System Reliability and Safety (ICSRS), pages 92–96, 2018.

[Mar07] Daniel Marjamäki. Cppcheck. http://cppcheck.sourceforge.net, 2007. Ac-
cessed: 2021-08-03.

[Mau15] Maurício Aniche. Java code metrics calculator (CK). https://github.com/
mauricioaniche/ck, 2015. Accessed: 2021-08-03.

[MDSK21] Nicole Perlroth Michael D. Shear and Clifford Krauss. Colonial pipeline paid
roughly 5 million in ransom to hackers. https://www.nytimes.com/2021/05/13/
us/politics/biden-colonial-pipeline-ransomware.html, 2021. Accessed:
2021-08-03.

[Mic15a] Microsoft. Visual studio code. https://code.visualstudio.com, 2015. Ac-
cessed: 2021-08-03.

[Mic15b] Microsoft. Vs code webview apis. https://code.visualstudio.com/api/
extension-guides/webview, 2015. Accessed: 2021-08-03.

[Mic16a] Microsoft. Language server protocol, 2016. Accessed: 2021-08-03.

[Mic16b] Microsoft. Monaco. https://microsoft.github.io/monaco-editor/index.
html, 2016. Accessed: 2021-08-03.

170

http://cppcheck.sourceforge.net
https://github.com/mauricioaniche/ck
https://github.com/mauricioaniche/ck
https://www.nytimes.com/2021/05/13/us/politics/biden-colonial-pipeline-ransomware.html
https://www.nytimes.com/2021/05/13/us/politics/biden-colonial-pipeline-ransomware.html
https://code.visualstudio.com
https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview
https://microsoft.github.io/monaco-editor/index.html
https://microsoft.github.io/monaco-editor/index.html

Chapter 7. Conclusion and Future Work

[Mic20a] Trend Micro. New tekya ad fraud found on google play.
https://blog.trendmicro.com/trendlabs-security-intelligence/
new-tekya-ad-fraud-found-on-google-play, 2020. Accessed: 2021-08-
03.

[Mic20b] Microsoft. VSC - Visual Studio Code. https://code.visualstudio.com, 2020.
Accessed: 2021-08-03.

[Moo91] Bram Moolenaar. Vim. https://www.vim.org, 1991. Accessed: 2021-08-03.

[MR17] Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A repository of android
app vulnerability benchmarks. In Proceedings of the 13th PROMISE. ACM, 2017.

[MSDM16] Patrick Mutchler, Yeganeh Safaei, Adam Doupé, and John C. Mitchell. Target
fragmentation in android apps. In 2016 IEEE Security and Privacy Workshops,
SP Workshops 2016, San Jose, CA, USA, May 22-26, 2016, pages 204–213, 2016.

[MSHN17] Alfonso Murolo, Fabian Stutz, Maria Husmann, and Moira C. Norrie. Improved
developer support for the detection of cross-browser incompatibilities. In Web
Engineering - 17th International Conference, ICWE 2017, Rome, Italy, June 5-8,
2017, Proceedings, pages 264–281, 2017.

[MSTdF17] Omid Mirzaei, Guillermo Suarez-Tangil, Juan E. Tapiador, and José María
de Fuentes. Triflow: Triaging android applications using speculative informa-
tion flows. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates,
April 2-6, 2017, pages 640–651, 2017.

[NWA+17] Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. A stitch in time: Supporting android developers in writ-
ing secure code. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1065–1077, 2017.

[OAS18] OASIS. Sarif specification. https://github.com/oasis-tcs/sarif-spec, 2018.
Accessed: 2021-08-03.

[OLD+15] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick D.
McDaniel. Composite constant propagation: Application to android inter-
component communication analysis. In Antonia Bertolino, Gerardo Canfora, and
Sebastian G. Elbaum, editors, 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages
77–88. IEEE Computer Society, 2015.

[OMJ+13] Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bod-
den, Jacques Klein, and Yves Le Traon. Effective inter-component communication
mapping in android: An essential step towards holistic security analysis. In Pro-
ceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, pages 543–558, 2013.

[Ope15] OpenSignal. Android Fragmentation, 2015. Accessed: 2021-08-03.

[PBW18] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do android taint analysis tools
keep their promises? In Proceedings of ESEC/FSE. ACM, 2018.

171

https://blog.trendmicro.com/trendlabs-security-intelligence/new-tekya-ad-fraud-found-on-google-play
https://blog.trendmicro.com/trendlabs-security-intelligence/new-tekya-ad-fraud-found-on-google-play
https://code.visualstudio.com
https://www.vim.org
https://github.com/oasis-tcs/sarif-spec

[PDB19] Goran Piskachev, Lisa Nguyen Quang Do, and Eric Bodden. Codebase-adaptive
detection of security-relevant methods. In Proceedings of the 28th ISSTA. ACM,
2019.

[PK13] Rohan Padhye and Uday P. Khedker. Interprocedural data flow analysis in soot
using value contexts. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on State Of the Art in Java Program analysis, SOAP 2013, Seattle,
WA, USA, June 20, 2013, pages 31–36, 2013.

[PRL+19] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tuma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. Renaissance: benchmarking suite for
parallel applications on the JVM. In Proceedings of the 40th PLDI. ACM, 2019.

[PW19] Felix Pauck and Heike Wehrheim. Together strong: cooperative android app
analysis. In Proceedings of ESEC/FSE. ACM, 2019.

[PZ19] Felix Pauck and Shikun Zhang. Android app merging for benchmark speed-up
and analysis lift-up. In Proceedings of the 2nd A-Mobile@ASE. IEEE, 2019.

[QWR18] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers: Flow-
droid/iccta, amandroid, and droidsafe. In Proceedings of the 27th ISSTA. ACM,
2018.

[RAB14] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach
for classifying and categorizing android sources and sinks. In Proceedings of the
21st NDSS. The Internet Society, 2014.

[RAMB16] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvest-
ing runtime values in android applications that feature anti-analysis techniques. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The Internet Society, 2016.

[Ras16] Siegfried Rasthofer. Improving Mobile-Malware Investigations with Static and Dy-
namic Code Analysis Techniques. PhD thesis, Technische Universität Darmstadt,
December 2016.

[RATP17] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. Making mal-
ory behave maliciously: targeted fuzzing of android execution environments. In
Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, editors, Proceed-
ings of the 39th International Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017, pages 300–311. IEEE / ACM, 2017.

[Ray09] Pierre Raybaut. Spyder. https://www.spyder-ide.org, 2009. Accessed: 2021-
08-03.

[RCJ13] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: evaluating
android anti-malware against transformation attacks. In 8th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’13, Hangzhou,
China - May 08 - 10, 2013. ACM, 2013.

[REHM17] Michael Reif, Michael Eichberg, Ben Hermann, and Mira Mezini. Hermes: assess-
ment and creation of effective test corpora. In Proceedings of the 6th SOAP@PLDI.
ACM, 2017.

172

https://www.spyder-ide.org

Chapter 7. Conclusion and Future Work

[Reu21] Markus Reuter. Schon wieder desaströse sicherheit-
slücke in luca app. https://netzpolitik.org/2021/
it-sicherheit-schon-wieder-desastroese-sicherheitsluecke-in-luca-app,
2021. Accessed: 2021-09-21.

[RHS95] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Conference Record of POPL’95: 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, California, USA, January 23-25, 1995, pages 49–61, 1995.

[RKG04] Atanas Rountev, Scott Kagan, and Michael Gibas. Static and dynamic analysis
of call chains in java. In Proceedings of ISSTA. ACM, 2004.

[RM20] Venkatesh-Prasad Ranganath and Joydeep Mitra. Are free android app security
analysis tools effective in detecting known vulnerabilities? Empirical Software
Engineering, 25(1):178–219, 2020.

[RN10] Graeme D Ruxton and Markus Neuhäuser. When should we use one-tailed hy-
pothesis testing? Methods in Ecology and Evolution, 1(2):114–117, 2010.

[SAB19] Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems. Proc. ACM Program.
Lang., 3(POPL):48:1–48:29, January 2019.

[SAE+18] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at google. Commun. ACM,
61(4):58–66, March 2018.

[Saf14] Safe. https://github.com/sukyoung/safe, 2014. Accessed: 2021-08-03.

[SAP+11] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp,
and Ryan Berg. F4F: taint analysis of framework-based web applications. In
Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,
OR, USA, October 22 - 27, 2011, pages 1053–1068. ACM, 2011.

[SBF+16] Lovely Sinha, Shweta Bhandari, Parvez Faruki, Manoj Singh Gaur, Vijay Laxmi,
and Mauro Conti. Flowmine: Android app analysis via data flow. In 13th IEEE
Annual Consumer Communications & Networking Conference, CCNC 2016, Las
Vegas, NV, USA, January 9-12, 2016, pages 435–441, 2016.

[SCS21] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. Demanded abstract in-
terpretation. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 20211, pages 282–295.
ACM, 2021.

[SDAB16] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden.
Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2016), volume 56
of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:26,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

173

https://netzpolitik.org/2021/it-sicherheit-schon-wieder-desastroese-sicherheitsluecke-in-luca-app
https://netzpolitik.org/2021/it-sicherheit-schon-wieder-desastroese-sicherheitsluecke-in-luca-app
https://github.com/sukyoung/safe

[SDOF07] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The emperor’s new
security indicators. In 2007 IEEE Symposium on Security and Privacy (SP ’07),
pages 51–65, May 2007.

[SE14] Daniela Steidl and Sebastian Eder. Prioritizing maintainability defects based on
refactoring recommendations. In Chanchal K. Roy, Andrew Begel, and Leon Moo-
nen, editors, 22nd International Conference on Program Comprehension, ICPC
2014, Hyderabad, India, June 2-3, 2014, pages 168–176. ACM, 2014.

[SEB21] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. Incremental whole-
program analysis in datalog with lattices. In Stephen N. Freund and Eran Yahav,
editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, Virtual Event, Canada, June 20-25,
20211, pages 1–15. ACM, 2021.

[Sec19] IBM Security. Cost of a data breach report 2019. https://www.ibm.com/
downloads/cas/RDEQK07R, 2019. Accessed: 2021-08-03.

[Ser20] Amazon Web Services. Amazon codeguru reviewer. https://aws.amazon.com/
codeguru, 2020. Accessed: 2021-08-03.

[Ser21a] Amazon Web Services. Aws sdk for java, 2021. Accessed: 2021-08-03.

[Ser21b] Amazon Web Services. Public api of amazon codeguru reviewer, 2021. Accessed:
2021-08-03.

[SEV20] Helmut Seidl, Julian Erhard, and Ralf Vogler. Incremental abstract interpreta-
tion. In Alessandra Di Pierro, Pasquale Malacaria, and Rajagopal Nagarajan,
editors, From Lambda Calculus to Cybersecurity Through Program Analysis - Es-
says Dedicated to Chris Hankin on the Occasion of His Retirement, volume 12065
of Lecture Notes in Computer Science, pages 132–148. Springer, 2020.

[SFT15] Julian Schütte, Rafael Fedler, and Dennis Titze. Condroid: Targeted dynamic
analysis of android applications. In 29th IEEE International Conference on Ad-
vanced Information Networking and Applications, AINA 2015, Gwangju, South
Korea, March 24-27, 2015, pages 571–578, 2015.

[SGF+13] Ryan Stevens, Jonathan Ganz, Vladimir Filkov, Premkumar T. Devanbu, and Hao
Chen. Asking for (and about) permissions used by android apps. In Proceedings
of the 10th Working Conference on Mining Software Repositories, MSR ’13, San
Francisco, CA, USA, May 18-19, 2013, pages 31–40, 2013.

[Sha21] Lingkai Shao. Top 5 android automated testing frame-
works with code examples. https://bitbar.com/blog/
top-5-android-testing-frameworks-with-examples/, 2021. Accessed:
2021-09-09.

[SHR+00] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call
resolution for java. In Mary Beth Rosson and Doug Lea, editors, Proceedings of
the 2000 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA 2000), Minneapolis, Minnesota, USA, Oc-
tober 15-19, 2000, pages 264–280. ACM, 2000.

174

https://www.ibm.com/downloads/cas/RDEQK07R
https://www.ibm.com/downloads/cas/RDEQK07R
https://aws.amazon.com/codeguru
https://aws.amazon.com/codeguru
https://bitbar.com/blog/top-5-android-testing-frameworks-with-examples/
https://bitbar.com/blog/top-5-android-testing-frameworks-with-examples/

Chapter 7. Conclusion and Future Work

[Sie13] Siegfried Rasthofer. The android logging service – a dangerous feature
for user privacy? https://blogs.uni-paderborn.de/sse/2013/05/17/
privacy-threatened-by-logging, 2013. Accessed: 2021-08-03.

[SN93] Douglas Schuler and Aki Namioka. Participatory design: Principles and practices.
CRC Press, 1993.

[Sne96] Gregor Snelting. Combining slicing and constraint solving for validation of mea-
surement software. Static Analysis SE - 23, 1145(Springer):332–348, 1996.

[Son20] Jitendra Soni. This dangerous malware got around google
play store security. https://www.techradar.com/news/
phantomlance-malware-breaches-google-play-store-security, 2020.
Accessed: 2021-08-03.

[Soo00] Soot. https://github.com/Sable/soot, 2000. Accessed: 2021-08-03.

[Sou15] Souffle. https://github.com/oracle/souffle/wiki, 2015. Accessed: 2021-08-
03.

[Spr02a] Spring. Spring ioc container and beans. https://docs.spring.io/
spring-framework/docs/3.2.x/spring-framework-reference/html/beans.
html, 2002. Accessed: 2021-08-03.

[Spr02b] Spring. Spring web mvc framework. https://docs.spring.io/
spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.
html, 2002. Accessed: 2021-08-03.

[Spr21] Spring. The executable jar format. https://docs.spring.io/spring-boot/
docs/current/reference/html/appendix-executable-jar-format.html,
2021. Accessed: 2021-08-03.

[SRH95] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Lecture Notes in Computer
Science, 915:651–665, 1995.

[Sta19] Statcounter. Operating system market share worldwide jan - dec 2019. https://
gs.statcounter.com/os-market-share#monthly-201901-201912-bar, 2019.
Accessed: 2021-08-03.

[Sta20] Statista. Annual number of data breaches and exposed records in the united
states from 2005 to 2020. https://www.statista.com/statistics/273550/
data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed,
2020. Accessed: 2021-08-03.

[SW65] S. S. SHAPIRO and M. B. WILK. An analysis of variance test for normality
(complete samples). Biometrika, 52(3-4):591–611, dec 1965.

[Syn08] Synopsys. Coverity scan, 2008. Accessed: 2021-08-03.

[T21] Amaan T. Appium vs robotium. https://dzone.com/articles/
appium-vs-robotium, 2021. Accessed: 2021-09-09.

175

https://blogs.uni-paderborn.de/sse/2013/05/17/privacy-threatened-by-logging
https://blogs.uni-paderborn.de/sse/2013/05/17/privacy-threatened-by-logging
https://www.techradar.com/news/phantomlance-malware-breaches-google-play-store-security
https://www.techradar.com/news/phantomlance-malware-breaches-google-play-store-security
https://github.com/Sable/soot
https://github.com/oracle/souffle/wiki
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-executable-jar-format.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-executable-jar-format.html
https://gs.statcounter.com/os-market-share#monthly-201901-201912-bar
https://gs.statcounter.com/os-market-share#monthly-201901-201912-bar
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed
https://dzone.com/articles/appium-vs-robotium
https://dzone.com/articles/appium-vs-robotium

[TBM13] John C. Tang, Jed R. Brubaker, and Catherine C. Marshall. What do you see in
the cloud? understanding the cloud-based user experience through practices. In
Paula Kotzé, Gary Marsden, Gitte Lindgaard, Janet Wesson, and Marco Winck-
ler, editors, Human-Computer Interaction - INTERACT 2013 - 14th IFIP TC
13 International Conference, Cape Town, South Africa, September 2-6, 2013,
Proceedings, Part II, volume 8118 of Lecture Notes in Computer Science, pages
678–695. Springer, 2013.

[TC10] Emina Torlak and Satish Chandra. Effective interprocedural resource leak de-
tection. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, pages 535–544, New York, NY, USA,
2010. ACM.

[Tea11] PMD Team. Pmd. https://pmd.github.io, 2011. Accessed: 2021-08-03.

[Tea17] SpotBugs Team. Spotbugs. https://spotbugs.github.io, 2017. Accessed:
2021-08-03.

[Tec14] Robotium Tech. Robotium. https://github.com/RobotiumTech/robotium,
2014. Accessed: 2021-09-09.

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. Featureide: An extensible framework for feature-
oriented software development. Science of Computer Programming, 79:70–85,
2014.

[TPC+13] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. Andromeda: Accurate and scalable security analysis of web appli-
cations. In Fundamental Approaches to Software Engineering - 16th International
Conference, FASE 2013, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, pages 210–225, 2013.

[TPF+09] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. Taj: Effective taint analysis of web applications. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’09, pages 87–97, New York, NY, USA, 2009. ACM.

[TSS10] Mana Taghdiri, Gregor Snelting, and Carsten Sinz. Information flow analysis
via path condition refinement. In Formal Aspects of Security and Trust - 7th
International Workshop, FAST 2010, Pisa, Italy, September 16-17, 2010. Revised
Selected Papers, pages 65–79, 2010.

[TTYR17] Ke Tian, Gang Tan, Danfeng Daphne Yao, and Barbara G. Ryder. Redroid:
Prioritizing data flows and sinks for app security transformation. In Proceedings
of the 2017 Workshop on Forming an Ecosystem Around Software Transformation,
FEAST@CCS 2017, Dallas, TX, USA, November 3, 2017, pages 35–41, 2017.

[UKJS10] Ilkka Uusitalo, Kaarina Karppinen, Arto Juhola, and Reijo Savola. Trust and
cloud services-an interview study. In 2010 IEEE Second International Conference
on Cloud Computing Technology and Science, pages 712–720. IEEE, 2010.

176

https://pmd.github.io
https://spotbugs.github.io
https://github.com/RobotiumTech/robotium

Chapter 7. Conclusion and Future Work

[VCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a java bytecode optimization framework. In Proceedings
of CASCON. IBM, 1999.

[Ver06] Veracode. Veracode, 2006. Accessed: 2021-08-03.

[Ver17] Veracode. Veracode static for ide, 2017. Accessed: 2021-08-03.

[Vir14] VirusShare. https://virusshare.com, 2014. Accessed: 2021-08-03.

[VPBG18] Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C Gall. Con-
tinuous code quality: are we (really) doing that? In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, pages
790–795, 2018.

[VPP+11] Kaisa Väänänen-Vainio-Mattila, Jarmo Palviainen, Santtu Pakarinen, Else Lager-
stam, and Eeva Kangas. User perceptions of wow experiences and design impli-
cations for cloud services. In Alessandro Deserti, Francesco Zurlo, and Francesca
Rizzo, editors, Designing Pleasurable Products and Interfaces, DPPI ’11, Milano,
Italy, June 22-25, 2011, pages 63:1–63:8. ACM, 2011.

[VPP+18] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and H. C. Gall.
Context is king: The developer perspective on the usage of static analysis tools.
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 38–49, 2018.

[Vra17] Christos V. Vrachas. Integration of static analysis results with proguard optimizer
for android applications. Bachelor Thesis, 2017.

[VRCG+10] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot: A java bytecode optimization framework. In CASCON
First Decade High Impact Papers, pages 214–224. IBM Corp., 2010.

[WAL06] WALA. https://github.com/wala/WALA, 2006. Accessed: 2021-08-03.

[Web14] WebGoat. https://github.com/WebGoat/WebGoat, 2014. Accessed: 2021-08-03.

[WL16] Michelle Y. Wong and David Lie. Intellidroid: A targeted input generator for
the dynamic analysis of android malware. In Proceedings of the 23rd NDSS. The
Internet Society, 2016.

[WLR+17] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep
ground truth analysis of current android malware. In Proceedings of the 14th
DIMVA, volume 10327 of Lecture Notes in Computer Science. Springer, 2017.

[Woo08] R. F. Woolson. Wilcoxon Signed-Rank Test, pages 1–3. American Cancer Society,
2008.

[WR13] Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis for javascript.
In Mauro Pezzè and Mark Harman, editors, International Symposium on Software
Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, pages
336–346. ACM, 2013.

[WROR14] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting of
android apps. In Proceedings of CCS. ACM, 2014.

177

https://virusshare.com
https://github.com/wala/WALA
https://github.com/WebGoat/WebGoat

[WTK+08] Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David Kramer,
and Wolfgang Karl. Scientific cloud computing: Early definition and experi-
ence. In 10th IEEE International Conference on High Performance Computing
and Communications, HPCC 2008, 25-27 Sept. 2008, Dalian, China, pages 825–
830. IEEE Computer Society, 2008.

[WWLZ16] Songyang Wu, Pan Wang, Xun Li, and Yong Zhang. Effective detection of android
malware based on the usage of data flow apis and machine learning. Information
& Software Technology, 75:17–25, 2016.

[WWZ+20] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu, Zhenyu Guo, and Yingfei
Xiong. Scaling static taint analysis to industrial SOA applications: a case study
at alibaba. In Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors,
ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, pages 1477–1486. ACM, 2020.

[WZR16] Yan Wang, Hailong Zhang, and Atanas Rountev. On the unsoundness of static
analysis for android guis. In Proceedings of the 5th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2016, Santa
Barbara, CA, USA, June 14, 2016, pages 18–23, 2016.

[XCLM11] Jing Xie, Bill Chu, Heather Richter Lipford, and John T. Melton. ASIDE: IDE
support for web application security. In Twenty-Seventh Annual Computer Se-
curity Applications Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December
2011, pages 267–276, 2011.

[XGL+15] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. Effective
real-time android application auditing. In 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 899–914,
2015.

[YQL+16] Tianda Yang, Kai Qian, Lei Li, Dan Chia-Tien Lo, and Lixin Tao. Static mining
and dynamic taint for mobile security threats analysis. In 2016 IEEE International
Conference on Smart Cloud, SmartCloud 2016, New York, NY, USA, November
18-20, 2016, pages 234–240. IEEE Computer Society, 2016.

[YS17] Ayman Youssef and Ahmed F. Shosha. Quantitave dynamic taint analysis of
privacy leakage in android arabic apps. In Proceedings of the 12th International
Conference on Availability, Reliability and Security, ARES ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

[YXA+15] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
Appcontext: Differentiating malicious and benign mobile app behaviors using
context. In 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 303–313, 2015.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May
2012, San Francisco, California, USA, pages 95–109. IEEE Computer Society,
2012.

178

Chapter 7. Conclusion and Future Work

[ZJY+17] Dali Zhu, Hao Jin, Ying Yang, Di Wu, and Weiyi Chen. Deepflow: Deep learning-
based malware detection by mining android application for abnormal usage of
sensitive data. In 2017 IEEE Symposium on Computers and Communications,
ISCC 2017, Heraklion, Greece, July 3-6, 2017, pages 438–443, 2017.

[ZSO+17] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. How open source projects use static code analysis tools in con-
tinuous integration pipelines. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), pages 334–344. IEEE, 2017.

[ZTD19] Jie Zhang, Cong Tian, and Zhenhua Duan. Fastdroid: efficient taint analysis for
android applications. In Proceedings of the 41st ICSE. IEEE / ACM, 2019.

[ZZD+12] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,
and Wei Zou. Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of SPSM@CCS. ACM, 2012.

179

180

Supplementary Material of Chapter 2

A
A.1 Usability Test

To show how usable the tools in our TaintBench framework are, we conducted a controlled
experiment with experts to test jadx with TB-Extractor and Visual Studio Code (VSC)
with TB-Viewer. Thereby we wanted to answer the following research questions:

RQ1 Do users spend less time to inspect and document taint flows using TB-Extractor and
TB-Viewer than using plain jadx and Visual Studio Code?

RQ2 Do users perceive TB-Extractor and TB-Viewer to be more usable than plain jadx
and Visual Studio Code?

A.1.1 Participants

The TaintBench framework is designed for experts and it is hard to find suitable users. We sent
emails to researchers who work in area of program analysis and developers who have experience
in developing static analysis tools. We were able to recruit five experts to participate in our
study. Four of them are researchers (PhD students). One of them is a software engineer who has
experience in developing static analyzers. All participants are very familiar with taint analysis.
We denote them with User 1–5 in the following.

A.1.2 Study Design

Due to the low number of participants, we designed a within-subjects study for each tool, i.e.,
each participant tests all the conditions. We compare the condition with tool support to without
tool support. Table A.1 shows the tasks we designed for the study. While tasks VSC (control
condition) and VSC+TB-Viewer (experimental condition) are used to test TB-Viewer, the
tasks Jadx (control condition) and Jadx+TB-Extractor (experimental condition) are for
testing TB-Extractor.

Tasks for testing TB-Viewer: For TB-Viewer, the two tasks are about the inspection of
taint flows. These tasks simulate the manual inspection one has to do when evaluating a tool’s
precision. The participants were asked to judge whether taint flows reported by a taint analysis
tool are false positives or not. We prepared six taint flows reported by FlowDroid when apply-
ing it to an app from our benchmark suite. To avoid unfair distribution, we intentionally chose

181

A.1 Usability Test

Table A.1: Descriptions of tasks.

Task Description
VSC (control) The participant was given plain VS Code, decompiled

source code of an app X and 3 taint flows in X. The
participant was asked to judge whether these taint flows
are true positives or false positives in VS Code.

VSC+TB-Viewer (experimental) The participant was given VS Code with TB-Viewer
installed, decompiled source code of the app X and 3
taint flows in X (different 3 than in task VSC). The
participant was asked to judge whether these taint flows
are true positives or false positives in VS Code.

Jadx (control) The participant was given the Jadx decompiler, an apk
Y from our suite, and two expected taint flows specified
for the apk. The participant was asked to document
these two flows in TAF-format.

Jadx+TB-Extractor (experimental) The participant was given the Jadx decompiler ex-
tended with TB-Extractor, the apk Y from our suite,
and two expected taint flows (different 2 than in task
Jadx) specified for the apk. The participant was asked
to document these two flows in TAF-format.

six true-positive taint flows that we think to be similarly complex. However, the participants
are not aware of this and they have to triage the taint flows by searching through and looking
at relevant code.

In task VSC, the participants were given Visual Studio Code and decompiled source code
of the app. We asked them to inspect three taint flows that are documented in an XML file (in
AQL-Answer format1). For each flow we provide information only about the source and the sink
but not about the data-flow paths, as this is also the case when dealing with popular Android
taint analysis tools.2 For each participant, these three taint flows are randomly chosen from the
six taint flows. In task VSC+TB-Viewer, the participants are asked to inspect the remaining
three taint flows. In addition, they used Visual Studio with the extension TB-Viewer installed.
TB-Viewer can read the taint flows from this XML file and display them directly in Visual
Studio Code as described in Section 2.4.3.

To minimize the ordering/learning effects, we randomize the order of these two tasks for
the participants. We make sure that the participants do not always start with task VSC nor
VSC+TB-Viewer.

Tasks for testing TB-Extractor: For TB-Extractor, the participants are asked to doc-
ument taint flows that are determined in an Android app. Manual inspection and discovering
taint flows is a skillful and time-consuming task. To simplify the study, we give the participants
taint flows found by us. In other words, they do not need to search taint flows by themselves,
but only documenting them. We chose four taint flows from our baseline of an benchmark app.
As described in Section 2.4.3, in Visual Studio Code (including TB-Viewer) each taint flow is

1https://github.com/FoelliX/AQL-System/wiki/Answers
2Note that FlowDroid does provide an option to compute and output data-flow paths in its current version,

not, however, in the version used for this study. To construct the ground truth, we preferred not to use the current
version but instead the version from the ReproDroid paper due to the many false negatives that the current
FlowDroid version creates

182

https://github.com/FoelliX/AQL-System/wiki/Answers

Chapter A. Supplementary Material of Chapter 2

displayed with detailed information about source, sink, its attributes and its intermediate flows
as well as a general description. Note that we ensure the tasks VSC and VSC+TB-Viewer
to be conducted before the tasks for TB-Extractor. Thus, the participants already know
TB-Viewer when conducting the tasks for TB-Extractor.

In task Jadx, the participants are given jadx together with the chosen app. They are
asked to document two randomly chosen taint flows from the four prepared taint flows with a
code editor. They are given a template JSON file using TAF-format in which they only need
to fill in the information (code, line number etc.) about taint flows copied from jadx. The
TAF-format is explained to the participants before they start the task. In task Jadx+TB-
Extractor, the participants are given jadx with TB-Extractor. We play a short tutorial
video (six minutes) to them. This video explains how to document taint flows with the extended
jadx. The participants are required to document the other two taint flows. Similar to the tasks
for testing TB-Viewer, we also randomize the order of these two tasks for the participants.

A.1.3 Data Collection

We conducted the experiment with participants remotely via a video conference tool. Partic-
ipants were asked to share their screen with us all the time. After a brief introduction to the
study and guide for installation of our tools, we gave our tasks to the participants in written
form and asked them to solve the tasks independently without our help. In each session, the
participants were given maximally 30 minutes to solve each task. We measured the actual time
each participant spent for each task. We asked the participants to give us a clear signal when
they started and finished each task. After each task, the participants filled out an exit-survey.
In this survey, they were asked to evaluate the ten statements from the System Usability Scale
(SUS) and tell about their feeling when using the system to do the task. SUS is a question-
naire that is designed to measure the usability of the a system [Bro96]. The survey and the
descriptions of all tasks used can be found on our website.3

A.1.4 Results

Figure A.1 shows the results of our experiment. The measured time is used to answer RQ1 and
the SUS score for answering RQ2.

RQ1 (Time) All participants solved the tasks more efficiently with the support of TB-
Viewer and TB-Extractor than the ones without. Averagely, the time used for taskVSC+TB-
Viewer is reduced from 14.8 to 11 minutes in comparison to task VSC. With the support of
TB-Extractor, the average time for solving the task is even halved (from 21.6 to 10.8).

RQ2 (Usability) Overall, the participants responded positively to both tools. ExceptUser 2,
all users gave both TB-Viewer and TB-Extractor high SUS scores ranging from 80 to 100,
which means the usability of both tools is excellent or at least good from their point of view.
User 2 explained to us why he rated VSC+TB-Viewer with low scores. He felt it was
very cumbersome to do the task without the data-flow path of a taint flow displayed in the
editor. However, this information is not given in the results of FlowDroid, thus, TB-Viewer
cannot provide this feature. Actually, if the information about the data-flow path is given in the
analysis results, TB-Viewer can actually display this information as done for the taint flows in
our baseline (see Figure 2.3). While User 2 complained more about the analysis results missing
data-flow path, other users felt well supported by the tool while solving the task. For example,
User 1 told us about his positive feeling about TB-Viewer:

3https://taintbench.github.io/userstudy

183

https://taintbench.github.io/userstudy

A.1 Usability Test

System Usability Scale (SUS) Score Comparison

0

50

100

User 1 User 2 User 3 User 4 User 5

100
92.592.5

65

87.5

55

42.5

72.5

40

20

8587.5
92.5

40

80

37.5
30

57.5

35
40

VSC VSC + TB-Viewer Jadx Jadx + TB-Extractor

A (Excellent)

B (Good)
C (OK)

D (Poor)

F (Awful)

80.3

68

51

A (Excellent): (80.3, 100] B (Good): (68, 80.3] C (OK): 68 D (Poor): [51, 68) F (Awful): [0, 51)

Time Comparison

0

15

30

User 1 User 2 User 3 User 4 User 5

910
13

1111

15

28

23

19

23

7

14
17

89
11

17

21

11
14

mins

Figure A.1: Experimental results.

“Not having to switch back and forth constantly between VS Code and the XML file
took away a lot of possible problem vectors. Like scrolling too far, misreading a line,
misunderstanding what a particular line in the XML means. Even though the tool
didn’t provide a lot more functionality (the ‘jump to’ feature is much appreciated)
than the XML-based solution, I still felt more secure with my results in the end."

Also User 4 had similar feeling when solving task VSC+TB-Viewer and wrote:

“Finding the sources and sinks is much easier than without the system. Still it is
not always easy to find the path between source and sink. Overall, the task is much
easier to solve than without the system and gives higher confidence in giving the
correct evaluation.”

In the documentation tasks, without TB-Extractor, all participants felt doing the task
was very tedious and error-prone. They all made some mistakes (e.g., wrong line number,
wrong method signature) in the documentation. In contrast, the taint flows documented with
TB-Extractor were all correct. The participants felt TB-Extractor was self explanatory
and easy to use. Especially User 5 who had to document taint flows for other work before, gave
a full SUS score (100) to TB-Extractor and spent the least time (9 minutes) for the task.
User 3’s comments also show TB-Extractor eases the task:

184

Chapter A. Supplementary Material of Chapter 2

Task Jadx: “Absolutely cumbersome to use. A lot of busy work. No support by the
tool at all."

Task Jadx+TB-Extractor: “Easy to use! However, the description of the taint
flow is in a separate window. But the window is well designed."

User 3’s comment on task Jadx reflects probably one of the main reasons for why in previous
evaluations of taint analysis tools the ground truth was rarely documented. In summary, we see
that TB-Extractor allows participants to document taint flows more efficiently and correctly.

A.2 Figures

185

A.2 Figures

B
e

n
ch

m
a

rk
s

B
e

n
ch

m
a

rk
s

B
e

n
ch

m
a

rk
s

In
p

u
t

3
4

4
C

o
n

ta
g
io

A
p

p
s

5
8

A
p

p
s

4
2

A
p

p
s

E
x
cl

u
d

e
d

 A
p

p
s

E
x
is

te
n

ce
o

f
b

e
h

a
vi

o
r

in
fo

rm
a

ti
o

n
?

Is
 t

h
e

 a
p

p

o
b

fu
sc

a
te

d
?

T
a

in
t

fl
o

w
s

id

e
n

ti
fi

e
d

?
P

e
e

r
In

sp
e

ct
io

n

R
e

vi
e

w

3
9

B
e

n
ch

m
a

rk
 A

p
p

s
(w

it
h

 1
4

9
 e

xp
e

ct
e

d
 t

a
in

t
fl

o
w

s)

Y
e

s

Y
e

s
Y

e
s

N
o

N
o

N
o

T
A

F

D
o

cu
m

e
n

ta
ti

o
n

Li
st

s
o

f
S
o

u
rc

e
s

a
n

d
 S

in
ks

E
x
tr

a
ct

io
n

In
sp

e
ct

io
n

O
u

tp
u

t

3
9

B
e

n
ch

m
a

rk
 A

p
p

s
2

4
9

B
e

n
ch

m
a

rk
 C

a
se

s
(w

it
h

 2
0

3
 e

xp
e

ct
e

d
 a

n
d

4
6

u
n

e
xp

e
ct

e
d

 t
a

in
t

fl
o

w
s)

N
e

w
 T

a
in

t
Fl

o
w

s
(r

e
p

o
rt

e
d

 b
y

to
o

ls
)

1
0

0
 A

d
d

it
io

n
a

l
B

e
n

ch
m

a
rk

 C
a

se
s

(5
4

e
xp

e
ct

e
d

 a
n

d
 4

6
u

n
e

xp
e

ct
e

d
 t

a
in

t
fl

o
w

s)

T
A

F

D
o

cu
m

e
n

ta
ti

o
n

A
n

a
ly

si
s

T
o

o
ls

Fi
gu

re
A
.2
:
T
he

co
ns
tr
uc

tio
n
pr
oc
es
s
of

th
e

T
ai

nt
B

en
ch

su
ite

.

186

Supplementary Material of Chapter 3

B
B.1 Figures

187

B.1 Figures

A
n

dr
oi

d

1
1

: L
o

o
p

er
T

h
re

ad
.

st
ar

t(
)

1
2

: L
o

o
p

er
T

h
re

ad
.

ru
n

()

1
5

: I
n

te
n

t.
ge

tS
er

ia
liz

ab
le

Ex
tr

a(
)

1
6

: P
u

sh
M

es
sa

ge
H

a
n

d
le

r.
o

b
ta

in
M

e
ss

a
ge

()

1
7

: P
u

sh
M

es
sa

ge
H

a
n

d
le

r.
se

n
d

M
e

ss
a

ge
()

1
9

: H
tt

p
C

li
en

t.
e

xe
cu

te
()

1
3

: P
u

sh
M

es
sa

ge
H

a
n

d
le

r(
)

Ja
va

8
: M

ai
n

A
ct

iv
it

y.
st

ar
tS

e
rv

ic
e

()

3
: L

o
ca

ti
o

n
M

an
a

ge
r.

ge
tL

as
tK

n
o

w
Lo

ca
ti

o
n

()
4

: M
sg

.s
et

C
o

n
te

n
t(

)

6
: I

n
te

n
t(

)
7

: I
n

te
n

t.
p

u
tE

xt
ra

()

2
: M

ai
n

A
ct

iv
it

y.
o

n
St

ar
t(

)
5

: M
ai

n
A

ct
iv

it
y.

o
n

P
au

se
()

1
0

: T
as

kS
e

rv
ic

e
.

o
n

C
re

a
te

()

1
4

: T
as

kS
e

rv
ic

e
.

o
n

St
ar

tC
o

m
m

an
d

()

1
8

: P
u

sh
M

es
sa

ge
H

a
n

d
le

r.
h

an
d

le
M

e
ss

ag
e

()
1

: M
ai

n
A

ct
iv

it
y(

)
9

: T
as

kS
er

vi
ce

()

M
is

si
n

g
ed

ge
 in

 t
h

e
ca

ll
gr

ap
h

 u
se

d
 b

y
Fl

o
w

D
ro

id

Fi
gu

re
B
.1
:
Es

se
nt
ia
ls

ub
gr
ap

h
of

th
e
ac
tu
al

ca
ll
gr
ap

h
of

th
e
m
ot
iv
at
in
g
ex
am

pl
e.

188

Chapter B. Supplementary Material of Chapter 3

D
u

m
m

yM
ai

n
C

la
ss

.d
u

m
m

yM
ai

n
A

ct
iv

it
y(

):

a.
o

n
C

re
at

e
()

a.
o

n
P

au
se

()

a.
o

n
St

ar
t(

)

M
ai

n
A

ct
iv

it
y

a
=

n
ew

 M
ai

n
A

ct
iv

it
y(

)

P P P

re
tu

rn
 a

M
sg

.s
e

tC
o

n
te

n
t(

St
ri

n
g

st
r)

:

D
u

m
m

yM
ai

n
C

la
ss

.d
u

m
m

yT
as

kS
er

vi
ce

()
:

s.
o

n
St

ar
tC

o
m

m
an

d
(.

..
)

..
.

P
u

sh
M

es
sa

ge
H

an
d

le
r.

h
an

d
le

M
es

sa
ge

(M
es

sa
ge

 m
sg

):

..
.

h
tt

p
cl

ie
n

t.
ex

ec
u

te
(h

tt
p

p
o

st
)

Ta
sk

Se
rv

ic
e

.o
n

St
ar

tC
o

m
m

an
d

(.
..

):

..
.

h
an

d
le

r.
se

n
d

M
e

ss
ag

e(
m

sg
)

..
.

M
ai

n
A

ct
iv

it
y.

o
n

P
au

se
()

: ..
.

in
te

n
t.

p
u

tE
xt

ra
("

d
at

a"
, t

h
is

.m
sg

)

st
ar

tS
er

vi
ce

(i
n

te
n

t)

M
ai

n
A

ct
iv

it
y.

o
n

St
ar

t(
):

Lo
ca

ti
o

n
 lo

c
=

 lm
.g

et
La

st
K

n
o

w
n

Lo
ca

ti
o

n
("

n
et

w
o

rk
")

th
is

.m
sg

.s
et

C
o

n
te

n
t(

lo
c.

to
St

ri
n

g(
))

..
.

d
u

m
m

yM
ai

n
C

la
ss

.d
u

m
m

yM
ai

n
M

e
th

o
d

(S
tr

in
g.

..
ar

gs
):

th
is

.c
 =

 s
tr

lo
c

 s
tr th
is

.c

th
is

.m
sg

.c

th
is

.m
sg

.c

in
te

n
t.

ex
tr

aV
al

u
es

.c

d
u

m
m

yM
ai

n
A

ct
iv

it
y(

)

d
u

m
m

yT
as

kS
er

vi
ce

()

a.
m

sg
.c

PP P
1 4

2 3

5

6

7

..
.

So
u
rc
e

Si
n
k

M
is

si
n

g
In

te
rp

ro
ce

d
u

ra
l p

at
h

In
te

rp
ro

ce
d

u
ra

l e
d

ge

In
tr

ap
ro

ce
d

u
ra

l e
d

ge

Le
ge
n
d
:

a.
b

.c
Ta

in
te

d
 a

cc
es

s
p

at
h

x
St

e
p

 o
n

 t
h

e
ta

in
t

p
at

h

M
is

si
n

g
In

te
rp

ro
ce

d
u

ra
l p

at
h

In
te

rp
ro

ce
d

u
ra

l e
d

ge

In
tr

ap
ro

ce
d

u
ra

l e
d

ge

Le
ge
n
d
:

a.
b

.c
Ta

in
te

d
 a

cc
es

s
p

at
h

x
St

e
p

 o
n

 t
h

e
ta

in
t

p
at

h Fi
gu

re
B
.2
:

F
lo

w
D

ro
id
’s

ta
in
t
an

al
ys
is

on
ge
ne

ra
te
d
IC

FG
fo
r
th
e
m
ot
iv
at
in
g
ex
am

pl
e.

189

B.2 Tables

B.2 Tables

Table B.1: Detailed evaluation results on DroidBench.

Category: Aliasing

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
FlowSensitivity1 0 0 0 0 1 0
Merge1 0 1 0 0 1 0
SimpleAliasing1 0 1 0 0 1 0
StrongUpdate1 0 0 0 0 0 0

Category: Android Specific

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
ApplicationModeling1 1 0 0 1 0 0
DirectLeak1 1 0 0 1 0 0
InactiveActivity 0 0 0 0 1 0
Library2 1 0 0 1 0 0
Obfuscation1 1 0 0 1 0 0
Parcel1 0 0 1 0 0 1
PrivateDataLeak1 0 0 1 0 0 1
PrivateDataLeak2 0 0 1 0 0 1
PrivateDataLeak3 0 0 1 0 0 1
PublicAPIField1 0 0 1 1 0 0
PublicAPIField2 1 0 0 1 0 0
View1 1 0 0 1 0 0

Category: Arrays and Lists

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
ArrayAccess1 0 1 0 0 1 0
ArrayAccess2 0 1 0 0 1 0
ArrayAccess3 1 0 0 1 0 0
ArrayAccess4 0 0 0 0 0 0
ArrayAccess5 0 1 0 0 0 0
ArrayCopy1 1 0 0 1 0 0
ArrayToString1 1 0 0 1 0 0
HashMapAccess1 0 1 0 0 1 0
ListAccess1 0 1 0 0 1 0
MultidimensionalArray1 1 0 0 1 0 0

190

Chapter B. Supplementary Material of Chapter 3

Table B.1 Continued.

Category: Callbacks

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
AnonymousClass1 1 0 0 0 0 1
Button1 1 0 0 0 0 1
Button2 2 1 1 0 0 3
Button3 1 0 0 1 0 0
Button4 1 0 0 0 0 1
Button5 0 0 1 0 0 1
LocationLeak1 1 0 0 0 0 1
LocationLeak2 1 0 0 0 0 1
LocationLeak3 1 0 0 0 0 1
MethodOverride1 1 0 0 1 0 0
MultiHandlers1 0 0 0 0 0 0
Ordering1 0 0 0 0 0 0
RegisterGlobal1 1 0 0 1 0 0
RegisterGlobal2 1 0 0 1 0 0
Unregister1 0 1 0 0 1 0

Category: Emulator Detection

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
Battery1 1 0 0 1 0 0
Bluetooth1 1 0 0 1 0 0
Build1 1 0 0 1 0 0
Contacts1 1 0 0 1 0 0
ContentProvider1 1 0 0 1 0 0
DeviceId1 1 0 0 1 0 0
File1 1 0 0 1 0 0
IMEI1 0 0 1 0 0 1
IP1 1 0 0 1 0 0
PI1 1 0 0 0 0 1
PlayStore1 1 0 0 1 0 0
PlayStore2 1 0 0 0 0 1
Sensors1 1 0 0 1 0 0
SubscriberId1 1 0 0 1 0 0
VoiceMail1 1 0 0 1 0 0

191

B.2 Tables

Table B.1 Continued.

Category: Field and Object Sensitivity

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
FieldSensitivity1 0 0 0 0 0 0
FieldSensitivity2 0 0 0 0 0 0
FieldSensitivity3 1 0 0 1 0 0
FieldSensitivity4 0 0 0 0 0 0
InheritedObjects1 1 0 0 1 0 0
ObjectSensitivity1 0 0 0 0 0 0
ObjectSensitivity2 0 0 0 0 0 0

Category: General Java

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
Clone1 0 0 1 0 0 1
Exceptions1 1 0 0 1 0 0
Exceptions2 1 0 0 1 0 0
Exceptions3 0 1 0 0 1 0
Exceptions4 0 0 1 0 0 1
Exceptions5 0 0 1 0 0 1
Exceptions6 1 0 0 1 0 0
Exceptions7 0 0 0 0 0 0
FactoryMethods1 0 0 1 0 0 1
Loop1 1 0 0 1 0 0
Loop2 1 0 0 1 0 0
Serialization1 0 0 1 0 0 1
SourceCodeSpecific1 0 0 1 0 0 1
StartProcessWithSecret1 1 0 0 1 0 0
StaticInitialization1 0 0 1 1 0 0
StaticInitialization2 1 0 0 1 0 0
StaticInitialization3 0 0 1 0 0 1
StringFormatter1 0 0 1 0 0 1
StringPatternMatching1 1 0 0 1 0 0
StringToCharArray1 1 0 0 1 0 0
StringToOutputStream1 1 0 0 1 0 0
UnreachableCode 0 0 0 0 0 0
VirtualDispatch1 1 1 0 0 0 1
VirtualDispatch2 0 1 1 0 1 1
VirtualDispatch3 0 1 0 0 1 0
VirtualDispatch4 0 0 0 0 0 0

192

Chapter B. Supplementary Material of Chapter 3

Table B.1 Continued.

Category: Inter Component Communication

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
ActivityCommunication1 1 0 0 1 0 0
ActivityCommunication2 0 0 1 1 1 0
ActivityCommunication3 0 0 1 1 1 0
ActivityCommunication4 0 0 1 1 1 0
ActivityCommunication5 0 0 1 1 1 0
ActivityCommunication6 0 0 1 1 0 0
ActivityCommunication7 0 0 1 1 1 0
ActivityCommunication8 0 0 1 1 1 0
BroadcastTaintAndLeak1 0 0 1 1 0 0
ComponentNotInManifest1 0 0 1 1 1 0
EventOrdering1 0 0 1 0 0 1
IntentSink1 1 0 0 1 0 0
IntentSink2 1 0 0 0 0 1
IntentSource1 0 0 1 0 0 1
ServiceCommunication1 0 0 1 0 0 1
SharedPreferences1 0 0 1 0 0 1
Singletons1 1 0 0 0 0 1
UnresolvableIntent1 0 0 2 2 0 0

Category: Implicit Flow

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
ImplicitFlow1 1 0 0 1 0 0
ImplicitFlow6 0 0 0 0 0 0

Category: Threading

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
AsyncTask1 1 0 0 1 0 0
Executor1 1 0 0 1 0 0
JavaThread1 1 0 0 1 0 0
JavaThread2 1 0 0 1 0 0
Looper1 1 0 0 1 0 0
TimerTask1 0 0 1 0 0 1

193

B.2 Tables

Table B.1 Continued.

Category: Native

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
JavaIDFunction 0 0 1 0 0 1
NativeIDFunction 1 0 0 1 0 0
SinkInNativeCode 1 0 0 1 0 0
SinkInNativeLibCode 1 0 0 1 0 0
SourceInNativeCode 1 0 0 1 0 0

Category: Reflection ICC

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
ActivityCommunication2 0 0 1 1 1 0
AllReflection 0 0 1 0 0 1
OnlyIntent 0 0 1 0 0 1
OnlyIntentReceive 1 0 0 1 0 0
OnlySMS 0 0 1 0 0 1
OnlyTelephony 0 0 1 1 0 0
OnlyTelephonyDynamic 0 0 1 0 0 1
OnlyTelephonyReverse 0 0 1 0 0 1
OnlyTelephonySubstring 0 0 1 0 0 1
SharedPreferences1 0 0 2 0 0 2

Category: Reflection

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
Reflection1 1 0 0 1 0 0
Reflection2 0 0 1 0 0 1
Reflection3 0 0 1 0 0 1
Reflection4 0 0 1 0 0 1
Reflection5 0 0 1 0 0 1
Reflection6 0 0 1 0 0 1
Reflection7 0 0 1 0 0 1
Reflection8 0 0 1 0 0 1
Reflection9 0 0 1 0 0 1

Category: Self Modification

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
BytecodeTamper1 0 0 1 0 0 1
BytecodeTamper2 0 0 1 0 0 1
BytecodeTamper3 0 0 1 0 0 1

194

Chapter B. Supplementary Material of Chapter 3

Table B.1 Continued.

Category: Lifecycle

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
ActivityEventSequence1 1 0 0 1 0 0
ActivityEventSequence2 1 0 0 1 0 0
ActivityEventSequence3 0 0 1 1 0 0
ActivityLifecycle1 1 0 0 1 0 0
ActivityLifecycle2 1 0 0 1 0 0
ActivityLifecycle3 1 0 0 1 0 0
ActivityLifecycle4 1 0 0 1 0 0
ActivitySavedState1 0 0 1 0 0 1
ApplicationLifecycle1 1 0 0 1 0 0
ApplicationLifecycle2 1 0 0 1 0 0
ApplicationLifecycle3 1 0 0 1 0 0
AsynchronousEventOrdering1 1 0 0 1 0 0
BroadcastReceiverLifecycle1 1 0 0 1 0 0
BroadcastReceiverLifecycle2 0 0 1 0 0 1
BroadcastReceiverLifecycle3 0 0 1 0 0 1
EventOrdering1 1 0 0 1 0 0
FragmentLifecycle1 1 0 0 1 0 0
FragmentLifecycle2 0 0 1 1 0 0
ServiceEventSequence1 0 0 1 1 0 0
ServiceEventSequence2 0 0 1 1 0 0
ServiceEventSequence3 0 0 1 1 0 0
ServiceLifecycle1 1 0 0 1 0 0
ServiceLifecycle2 1 0 0 1 0 0
SharedPreferenceChanged1 0 0 1 0 0 1

Category: Dynamic Loading

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
DynamicBoth1 1 0 0 1 0 0
DynamicSink1 1 0 0 1 0 0
DynamicSource1 1 0 0 1 0 0

Category: Unreachable Code

FlowDroid FlowDroidGen

Benchmark App TP FP FN TP FP FN
SimpleUnreachable1 0 0 0 0 0 0
UnreachableBoth 0 0 1 0 0 1
UnreachableSink1 0 0 1 0 0 1
UnreachableSource1 1 0 0 1 0 0

195

B.2 Tables

Table B.2: Detailed evaluation results on TaintBench.

x : Expected flow x : Unexpected flow
⋆ = True positive = False negative = No flow reported for the app ⋆ = False positive, Empty cell = Flow not reported

Benchmark App Flow ID

backflash 1 2 3 4 5 6 7 8 17 19 20 21 22 9 10 11
FlowDroid ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
FlowDroidGen ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
backflash 12 13 14 15 16 18 23 24
FlowDroid ⋆ ⋆ ⋆
FlowDroidGen ⋆ ⋆ ⋆ ⋆

beita_com* 1 2 3
FlowDroid
FlowDroidGen ⋆

cajino_baidu 1 2 3 4 5 6 7 8 9 10 12 15 11 13 14
FlowDroid ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
FlowDroidGen ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

chat_hook 1 2 3 4 5 6 7 8 9 10 11 12 13
FlowDroid ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
FlowDroidGen ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

chulia 1 2 3 4
FlowDroid
FlowDroidGen

death_ring* 1
FlowDroid ⋆
FlowDroidGen ⋆

dsencrypt* 1
FlowDroid
FlowDroidGen

exprespam 1 2
FlowDroid
FlowDroidGen ⋆

fakeappstore 1 2 3
FlowDroid
FlowDroidGen ⋆

fakebank* 1 2 3 4 5
FlowDroid
FlowDroidGen ⋆ ⋆

fakedaum 1 2
FlowDroid
FlowDroidGen ⋆

fakemart 1 2
FlowDroid
FlowDroidGen

fakeplay 1 2
FlowDroid
FlowDroidGen

196

Chapter B. Supplementary Material of Chapter 3

Table B.2 Continued.

x : Expected flow x : Unexpected flow
⋆ = True positive = False negative = No flow reported for the app ⋆ = False positive, Empty cell = Flow not reported

Benchmark App Flow ID

faketaobao 1 2 3 4
FlowDroid
FlowDroidGen ⋆ ⋆ ⋆

godwon_samp 1 2 3 4 5 6
FlowDroid
FlowDroidGen ⋆ ⋆ ⋆ ⋆

hummingbad* 1 2
FlowDroid
FlowDroidGen

jollyserv 1
FlowDroid
FlowDroidGen

overlaylocker2* 1 2 3 4 5 6 7
FlowDroid
FlowDroidGen

overlaylocker2* 8 9 10 11 12 13 14 15 16 17 18 19
FlowDroid
FlowDroidGen ⋆

overlay_android* 1 2 3 4 5 6
FlowDroid ⋆ ⋆
FlowDroidGen ⋆

phospy 1 2 3 4 5
FlowDroid ⋆ ⋆
FlowDroidGen ⋆ ⋆ ⋆ ⋆

proxy_samp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
FlowDroid ⋆ ⋆
FlowDroidGen ⋆ ⋆
proxy_samp 18 16 19 20
FlowDroid
FlowDroidGen

remote_control* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FlowDroid
FlowDroidGen ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
remote_control* 16 17
FlowDroid
FlowDroidGen ⋆

repane 1
FlowDroid
FlowDroidGen

roidsec 1 2 3 4 5 6
FlowDroid
FlowDroidGen

samsapo 1 2 3 4 5
FlowDroid
FlowDroidGen ⋆

197

B.2 Tables

Table B.2 Continued.

x : Expected flow x : Unexpected flow
⋆ = True positive = False negative = No flow reported for the app ⋆ = False positive, Empty cell = Flow not reported

Benchmark App Flow ID

save_me 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
FlowDroid ⋆ ⋆
FlowDroidGen ⋆ ⋆
save_me 17 18 21 22 23 24 25 30 31 19 20 26 27 28 29
FlowDroid
FlowDroidGen

scipiex 1 2 3
FlowDroid
FlowDroidGen ⋆

slocker* 1 2 3 4 5
FlowDroid
FlowDroidGen ⋆

smssend* 1 2 3 4 5
FlowDroid ⋆ ⋆ ⋆ ⋆
FlowDroidGen ⋆ ⋆

smssilience* 1 2 3 4
FlowDroid
FlowDroidGen

smsstealer* 1 2 3 4 5
FlowDroid ⋆
FlowDroidGen ⋆

sms_google 1 2 3 4
FlowDroid
FlowDroidGen ⋆

sms_send* 1 2 3 6 7 8 4 5
FlowDroid
FlowDroidGen

stels* 1 2 3
FlowDroid ⋆ ⋆
FlowDroidGen ⋆ ⋆

tetus 1 2
FlowDroid
FlowDroidGen ⋆

the_interview_movieshow 1
FlowDroid
FlowDroidGen

threatjapan_uracto 1 2
FlowDroid
FlowDroidGen

vibleaker* 1 2 3 4
FlowDroid
FlowDroidGen

xbot* 1 2 3
FlowDroid
FlowDroidGen

198

Supplementary Material of Chapter 5

C
C.1 Comparison Between MagpieBridge-Based Approach and

Plugin-Based Approach
While MagpieBridge enables analyses to run in a larger set of IDEs, the question remains of
how the support in any specific IDE using MagpieBridge compares to a custom-built plugin
for that same IDE. Because most analysis tools do not have integration with most IDEs, we are
going to focus our comparison on one existing combination: the CogniCrypt plugin for Eclipse.
Afterwards, we discuss in more general terms the range of functionality exploited by custom
plugins that is supported by LSP. Note that the comparison in this section is based on the
version of MagpieBridge when it was first published at the ECOOP conference [LDB19].

C.1.1 Comparison Between MagpieBridge-Based CogniCrypt and CogniCrypt
Eclipse Plugin

The CogniCrypt Eclipse Plugin [KNR+17] consists of two components: code generation, which
generates secure implementations for user-defined cryptographic programming tasks, and crypto-
graphic misuse detection, which runs static code analysis in the background and reports insecure
usage of cryptographic APIs. MagpieBridge focuses on analysis, and so we do not consider
the code-generation component here. For comparison, we integrated the static crypto analysis
of CogniCrypt with MagpieBridge into Eclipse IDE.

Figure C.1 and Figure C.2 are screenshots in which the original CogniCrypt Eclipse Plugin
reports insecure crypto warnings. In comparison, Figure C.3 shows our CogniCrypt-integration
with MagpieBridge. Figure C.1 shows two buttons that CogniCrypt adds to the toolbar:
“Generate Code For Cryptographic Task” and “Apply CogniCrypt Misuse to Selected Project”.
By clicking the latter, one triggers the misuse detection using the plugin in its default configura-
tion. The plugin can also be configured to trigger the analysis whenever a Java file is saved. On
the other hand, MagpieBridge-based CogniCrypt starts the analysis automatically whenever a
Java file is opened or saved. In either case, after the analysis has been run, any detected misuses
are indicated in Eclipse in several ways, which the corresponding numbers show in Figure C.1
and Figure C.3:

1. In the Package Explorer view, the error ticks appear on the affected Java element and
their parent elements.

2. In the Problems view, the detected misuses are listed as errors.

199

C.1 Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach

Figure C.1: The appearance of CogniCrypt Eclipse Plugin.

3. The editor tab is annotated with an error marker.

4. In the editor’s vertical ruler / gutter, an error marker is displayed near the affected line.

As shown in Figure C.2, one can hover over an error marker next to the affected line to view
the description of the misuse. The appearance of the MagpieBridge-based and plugin-based
CogniCrypt is rather similar, with just a few differences:

• MagpieBridge-based CogniCrypt does not change the appearance of the IDE. To work
with the MagpieServer which runs the crypto analysis, end-users do not have to do anything
different. The analysis runs automatically whenever a Java file is opened or saved by an
end-user. In contrast, in the Eclipse Plugin, one can trigger the analysis manually, or
(optionally) have it started automatically whenever a file is saved.

• Results are indicated similarly in the CogniCrypt Eclipse Plugin MagpieBridge-based
CogniCrypt; however, in MagpieBridge-based CogniCrypt in addition to the error mark-
ers, squiggly lines appear under the affected lines.

• In MagpieBridge-based CogniCrypt, the hover message also includes a quick fix that
can replace the insecure parameter AES/ECB/PKCS5Padding with a secure parameter
ASE/CBC/PKCS5Padding automatically. Since MagpieBridge preserves the precise source
code position from the WALA source-code front end, e.g., the exact code range (start-
ing/ending line/column numbers) of each parameter of a method call, we were able to
build such quick fix easily with the codeAction feature supported by LSP. Such quick fix
is not available in the CogniCrypt Eclipse Plugin, although the warning message already
indicates what a secure parameter should look like.

Another difference is that, since MagpieBridge does not add buttons to the IDE, it needs to
invoke the analysis automatically. When the end-user changes the opened file, the MagpieServer
clears the warnings when it receives the didChange notification from the IDE. The analysis is
then restarted whenever the end-user saves the file, i.e., the MagpieServer receives a didSave

200

Chapter C. Supplementary Material of Chapter 5

Figure C.2: CogniCrypt Eclipse Plugin: insecure crypto warning message shown by hovering.

Figure C.3: The appearance of MagpieBridge-based CogniCrypt: insecure crypto warning
message and quick fix shown by hovering.

notification. Once the MagpieServer receives the notification from the Eclipse IDE, it resolves
the source code and library code path required for the inter-procedural crypto analysis. This
analysis is all asynchronous, so that the analysis always runs in the background and updated
error messages are shown once they are available. If they want to, end-users have the ability to
connect and disconnect the MagpieServer at runtime, e.g., via “Preferences” in Eclipse IDE.

C.1.2 Comparison to Other Plugin-Based Approaches

As shown in Figure C.4, LSP offers a set of UI features to present the analysis results to end-
users that are sufficient to capture the majority of UI features used in a range of existing plugins
for a single analysis tool in a specific IDE. Most of the plugin approaches we identified were im-
plemented as Eclipse plugins (Cheetah[DAL+17a], SpotBugs[Tea17] and ASIDE[XCLM11]), but
some of them were created for other popular IDEs such as Android Studio (FixDroid[NWA+17]),
IntelliJ (wIDE[MSHN17]) and Visual Studio (GhostFactor[GM14]). Figure C.4 shows the com-
parison between features that can be supported with LSP to features supported by these existing
plugin approaches.

Some plugins do use IDE features that are not explicitly supported by LSP; however, there
are often analogs in LSP that could be used instead. For instance, Cheetah uses a custom
view, essentially a separate window panel in the IDE, to show an example data-flow trace for
a bug; in LSP, related information capturing a trace can be attached to problems as illustrated
in Figure 5.18. Other uses of custom views and wizards are mainly for analysis configuration.

201

C.1 Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach

Simple forms of such analysis configuration could be supported by the message protocol in LSP.
One minor feature unsupported by LSP appeared in the plugins: customized icons (see

Figure C.5, Figure C.6 and Figure C.7) are not supported by the LSP-based approach, since that
requires changes to the appearance of the IDEs, which LSP intends not to. Although studies have
shown customized icons are useful to catch end-users’ attention [NWA+17, XCLM11, SDOF07],
it is not clear if it is more effective than the default error icon supported by each editor.

As we can see in Figure C.4, the major features such as hover tips, warning marker and code
highlighting, which are supported by a majority of the plugins, can be supported by an LSP-
based approach. However, LSP support varies across IDEs, both in what features are handled
and how they are shown. In LSP, hover tips are specified as the hover request sent from the
client to the server, warning marker can be realized by the publishDiagnostics notification
and documentHighlight is the corresponding request for code highlighting. However, the im-
plementation of documentHighlight varies from editor to editor, since the specification for this
feature in LSP is unclear. Most plugins listed in Figure C.4 support code highlighting. This
features means changing the background color of affected lines of code as shown in Figure C.5,
Figure C.6 and Figure C.7. While Visual Studio Code limits this feature to only highlights all
references to a symbol scoped in a file, sublime Text choses an underline for highlighting (see
Figure C.9). In addition, there is no possibility with LSP to specify the background color used
in this feature, all editors have their pre-defined colors.

Some advanced features such as code actions (we have shown quick fix with MagpieBridge-
based CogniCrypt), pop-ups and code change detections can also be supported by LSP. There are
two interfaces (showMessage and showMessageRequest) defined in LSP which are implemented
as pop-up windows in editors. Figure C.10 shows a message sent from a server to the Eclipse
IDE that is displayed in a pop-up window. Where more interactions are required, the interface
showMessageRequest allows to pass actions and wait for an answer from the client. Figure C.11
shows a pop-up windows with a message and available actions in Visual Studio Code.

Features that are not supported by LSP for now can be extended to LSP in the future, since
LSP is a moving target with ever-growing functionality and support. One just has to keep in
mind that, as the LSP is extended, the IDEs/editors that support it, might require extensions

Feature Comparison

Feature LSP-based
Approach

FixDroid
(Android Studio)

wIDE
(IntelliJ)

GhostFactor
(Visual Studio)

Cheetah
(Eclipse)

SpotBugs
(Eclipse)

ASIDE
(Eclipse)

Plugins
support the
feature

Warning Marker 5

Code Highlighting 4

Code Actions
(quick fix, code
generation)

3

Hover Tips 6

Pop-ups 2

Code Change Detection 2

Customized Icons 3

Customized Views 3

Customized Wizards 1

Figure C.4: Feature comparison between LSP-based approach and other plugin-based ap-
proaches.

202

Chapter C. Supplementary Material of Chapter 5

as well.

Figure C.5: Cheetah: code highlighting, hover tips, customized icon and views.

Figure C.6: FixDroid: code highlighting, hover tips and customized icon.

Figure C.7: ASIDE: code highlighting and customized icon.

203

C.1 Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach

Figure C.8: wIDE: customized wizard.

Figure C.9: Highlighting in Sublime Text.

Figure C.10: Pop-up in Eclipse.

Figure C.11: Pop-up with actions in Visual Studio Code.

204

Supplementary Material of Chapter 6

D
D.1 Script For User Interviews
Below is a script we used in user interviews introduced in Section 6.2, Chapter 6:

1. Tell the participant: We want to design an IDE integration of a cloud-based SAST tool
that you would like to use, so we would like to you to tell us what your expectations are.
The SAST tool performs complex static analyses in the cloud and it is time-consuming.

2. Talk through the prepared code review and ask the participant to demonstrate how issue
was fixed in IDE.

• Did you fix the issues mentioned in the recommendations provided by CodeGuru
Reviewer

• When and how did you do it?
• Can you demonstrate it in your IDE?

3. Talk about experience with other static analysis tools

• Can you tell us about your experience with other static analysis tools?
• How do you use it in your daily workflow?
• Can you demonstrate it?

4. Tell the participant: We want to ask you a few questions regarding how the IDE integration
is expected to work. Please demonstrate your ideas in your IDE if it is possible.

• Since the analysis is running in the cloud, how do you expect the code to be uploaded?
• When would you trigger the analysis?
• How should it be triggered?
• Do you think you would want to interrupt the analysis? Why?
• When and how should the analysis result be retrieved from the cloud?
• Which parts of the result do you expect to see?
• Where and how should the analysis result be shown in your IDE?
• Should the findings be classified? How should they be classified?
• How should outdated result be shown due to local code changes?
• What kinds of UX features do you expect?
• What kinds of features do you think will be helpful for your team?

205

D.2 Codes

D.2 Codes

206

Chapter D. Supplementary Material of Chapter 6

Ta
bl
e
D
.1
:
C
od

es

C
od

es
fr
om

U
se
r
In
te
rv
ie
w
s

T
he

m
e

C
od

e
D
efi

ni
ti
on

A
na

ly
sis

Tr
ig
ge
rin

g
M
ec
ha

ni
sm

C
od

e
U
pl
oa
di
ng

H
ow

sh
ou

ld
th
e
co
de

be
up

lo
ad

ed
A
na

ly
sis

Tr
ig
ge
rin

g
H
ow

sh
ou

ld
th
e
an

al
ys
is

be
tr
ig
ge
re
d

Pa
rt
ia
lC

od
e
U
pl
oa
di
ng

Ex
pe

ct
at
io
n
on

up
lo
ad

in
g
pa

rt
ia
lc

od
e

A
na

ly
sis

Te
rm

in
at
io
n

W
et
he
r
an

al
ys
is

sh
ou

ld
be

ab
le

to
in
te
rr
up

te
d/

te
rm

in
at
ed

T
im

e
of

U
pl
oa
di
ng

W
he
n
sh
ou

ld
th
e
co
de

be
up

lo
ad

ed
T
im

e
of

A
na

ly
sis

Tr
ig
ge
rin

g
W

he
n
is

th
e
tim

e
to

tr
ig
ge
r
an

al
ys
is

T
im

e
of

Lo
ok

in
g
fo
r
Is
su
es

W
he
n
to

lo
ok

fo
r
iss

ue
s

R
es
ul
t
R
et
rie

va
lM

ec
ha

ni
sm

A
cq
ui
sit

io
n
of

W
ar
ni
ng

s
H
ow

sh
ou

ld
w
ar
ni
ng

s
be

ob
ta
in
ed

fr
om

th
e
cl
ou

d
Pa

rt
ia
lC

od
e
U
pl
oa
di
ng

Ex
pe

ct
at
io
n
on

up
lo
ad

in
g
pa

rt
ia
lc

od
e

A
na

ly
sis

Sc
op

e
W

hi
ch

pa
rt
s
of

th
e
co
de

sh
ou

ld
be

an
al
yz
ed

an
d
w
hi
ch

w
ar
ni
ng

s
sh
ou

ld
be

sh
ow

n
A
na

ly
sis

T
im

e
H
ow

lo
ng

th
e
tim

e
sh
ou

ld
ta
ke

T
im

e
of

W
ar
ni
ng

D
isp

la
y

W
he
n
sh
ou

ld
th
e
w
ar
ni
ng

s
be

di
sp
la
ye
d

R
es
ul
t
D
isp

la
y
M
ec
ha

ni
sm

W
ar
ni
ng

A
pp

ea
re
nc
e

W
he
re

sh
ou

ld
th
e
w
ar
ni
ng

s
be

di
sp
la
ye
d
an

d
ho

w
sh
ou

ld
th
e
w
ar
ni
ng

s
lo
ok

lik
e?

W
ar
ni
ng

C
la
ss
ifi
ca
tio

n
W
et
he
r
an

d
ho

w
sh
ou

ld
th
e
w
ar
ni
ng

s
be

cl
as
sifi

ed
or

la
be

lle
d
w
ith

se
ve
rit

ie
s

D
isp

la
y
of

In
va
lid

W
ar
ni
ng

s
W
et
he
r
an

d
ho

w
sh
ou

ld
th
e
in
va
lid

(o
ld
)
w
ar
ni
ng

s
be

di
sp
la
ye
d
du

e
to

la
te
nc
y

U
X

Fe
at
ur
es

C
on

fig
ur
at
io
n

W
ha

t
co
nfi

gu
ra
tio

n
op

tio
ns

sh
ou

ld
be

pr
ov
id
ed

O
th
er

ID
E

Fe
at
ur
es

O
th
er

co
m
m
on

ID
E

fe
at
ur
es

su
ch

as
fix

es
,w

ar
ni
ng

su
pp

re
ss
io
n

W
or
kfl

ow
In
te
gr
at
io
n

Te
am

Fe
at
ur
es

Fe
at
ur
es

th
at

ar
e
us
ef
ul

fo
r
th
e
te
am

H
ab

it
W
or
ki
ng

ha
bi
t

T
im

e
of

Fi
xi
ng

Is
su
es

W
he
n
to

fix
iss

ue
s

T
im

e
of

Lo
ok

in
g
fo
r
Is
su
es

W
he
n
to

lo
ok

fo
r
iss

ue
s

ID
E

U
sa
ge

W
hi
ch

ID
E

th
e
de
ve
lo
pe

r
us
es

O
th
er

St
at
ic

A
na

ly
sis

To
ol
s

Ex
pe

rie
nc
e
w
ith

ot
he
r
st
at
ic

an
al
ys
is

to
ol
s

207

D.2 Codes
Ta

bl
e
D
.1

C
on

tin
ue

d.

C
od

es
fr
om

U
sa
bi
lit
y
T
es
ts

1.
D
im

en
si
on

T
he

m
e

C
od

e
D
efi

ni
ti
on

A
na

ly
sis

Tr
ig
ge
rin

g
M
ec
ha

ni
sm

C
od

e
U
pl
oa
di
ng

(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

T
im

e
of

A
na

ly
sis

Tr
ig
ge
rin

g
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

A
na

ly
sis

Tr
ig
ge
rin

g
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

R
es
ul
t
R
et
rie

va
lM

ec
ha

ni
sm

A
cq
ui
sit

io
n
of

W
ar
ni
ng

s
(I
D
E)

Se
e
de
fin

iti
on

ab
ov
e

A
na

ly
sis

T
im

e
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

A
na

ly
sis

Sc
op

e
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

T
im

e
of

W
ar
ni
ng

D
isp

la
y
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

R
es
ul
t
D
isp

la
y
M
ec
ha

ni
sm

W
ar
ni
ng

C
la
ss
ifi
ca
tio

n
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

W
ar
ni
ng

A
pp

ea
re
nc
e
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

D
isp

la
y
of

In
va
lid

W
ar
ni
ng

s
(I
D
E)

Se
e
de
fin

iti
on

ab
ov
e

Q
ua

lit
y
of

th
e
an

al
ys
is

re
su
lt

C
om

m
en
s
on

th
e
qu

ai
lit
y
of

an
al
ys
is

re
su
lt

V
ie
w

sw
itc

hi
ng

(W
eb
)

D
ev
el
op

er
s
m
en
tio

ne
d
sw

itc
hi
ng

be
tw

ee
n
ID

E
an

d
w
eb

br
ow

se
r

U
X

Fe
at
ur
es

O
th
er

ID
E

Fe
at
ur
es

Se
e
de
fin

iti
on

ab
ov
e

O
th
er

W
eb

Fe
at
ur
es

O
th
er

fe
at
ur
es

fo
r
W
eb

m
en
tio

ne
d
by

de
ve
lo
pe

rs
C
on

fig
ur
at
io
n
(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

W
or
kfl

ow
In
te
gr
at
io
n

H
ab

it
Se
e
de
fin

iti
on

ab
ov
e

O
th
er

St
at
ic

A
na

ly
sis

To
ol
s

Se
e
de
fin

iti
on

ab
ov
e

T
im

e
of

Lo
ok

in
g
fo
r
Is
su
es

(I
D
E/

W
eb
)

Se
e
de
fin

iti
on

ab
ov
e

ID
E

U
sa
ge

Se
e
de
fin

iti
on

ab
ov
e

Pe
rc
ep
tio

n
on

w
or
kfl

ow
(I
D
E/

W
eb
)

D
ev
el
op

er
s
ta
lk
ed

ab
ou

t
th
ei
r
pe

rc
ep
tio

n
on

th
e
w
or
kfl

ow
To

ol
pr
ef
er
en
ce

D
ev
el
op

er
s
ta
lk
ed

ab
ou

t
th
ei
r
pr
ef
er
en
ce

in
ID

E
or

W
eb

W
hy

an
d
w
he
n
to

gi
ve

fe
ed
ba

ck
D
ev
el
op

er
s
ta
lk
ed

ab
ou

t
w
hy

an
d
w
he
n
th
ey

ga
ve

fe
ed
ba

ck
to

a
fin

di
ng

(t
hu

m
b
up

/d
ow

n)
Is
su
es

an
d
C
au

se
s

D
on

’t
re
ad

(I
D
E/

W
eb
)

D
ev
el
op

er
s
m
en
tio

ne
d
th
at

th
ey

di
dn

’t
re
ad

po
p-
up

s
or

us
er

gu
id
es

Tu
to
ria

lr
eq
ui
re
d
(I
D
E/

W
eb
)

D
ev
el
op

er
s
m
en
tio

ne
d
th
at

th
ey

di
dn

’t
un

de
rs
ta
nd

ho
w

a
fe
at
ur
e
w
or
ks

Te
ch
ni
ca
li
ss
ue

(I
D
E/

W
eb
)

Te
ch
ni
ca
li
ss
ue

ca
us
ed

by
th
e
to
ol
s,

e.
g.

fa
ile

d
to

pu
sh

co
de

du
e
to

co
nfi

gu
ra
tio

n
of

gi
t
cr
ed
en
tia

ls
C
on

fu
sio

n
(I
D
E/

W
eb
)

D
ev
el
op

er
s
m
en
tio

ne
d
th
at

th
ey

w
er
e
co
nf
us
ed
.

St
ud

y
se
tu
p

D
ev
el
op

er
s
m
en
tio

ne
d
iss

ue
s
du

e
to

st
ud

y
se
tu
p,

e.
g.

to
o
m
an

y
iss

ue
s
fo
r
to
o
le
ss

tim
e

O
th
er

co
m
m
en
t
(I
D
E/

W
eb
)

O
th
er

co
m
m
en
ts

gi
ve
n
by

de
ve
lo
pe

rs
2.

D
im

en
si
on

Po
sit

iv
e
fe
ed
ba

ck
Po

sit
iv
e
fe
ed
ba

ck
fr
om

de
ve
lo
pe

rs
N
eg
at
iv
e
fe
ed
ba

ck
N
eg
at
iv
e
fe
ed
ba

ck
fr
om

de
ve
lo
pe

rs

208

Chapter D. Supplementary Material of Chapter 6

D.3 Survey For Usability Tests

Demographic Questions:

1. How many years of professional coding experience in Java do you have? (choose one)

• Less than 2 years
• 2 to 5 years
• 5 to 10 years
• More than 10 years

2. Have you used CodeGuru Reviewer before? (choose one)

• Yes
• No

3. Do you use Visual Studio Code to write code? (choose one)

• Yes
• No

4. Have you written an application with the AWS SDK for Java before? (choose one)

• Yes
• No

Exit-survey (questions regarding the test sessions):

1. The task that I just completed was ... (choose one)
1 (Very difficult) 2 3 4 5 (Very easy)

2. I think that I would like to use this system frequently. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

3. I found the system unnecessarily complex. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

4. I thought the system was easy to use. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

5. I think that I would need the support of a technical person to be able to use this system.
(choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

6. I found the various functions in this system were well integrated. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

7. I thought there was too much inconsistency in this system. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

8. I would imagine that most people would learn to use this system very quickly. (choose
one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

209

D.3 Survey For Usability Tests

9. I found the system very cumbersome to use. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

10. I felt very confident using the system. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

11. I needed to learn a lot of things before I could get going with this system. (choose one)
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

12. Which features do you think that were useful (multiple choices)? (select all that apply)
IDE:

• Fetch recommendations of a matching scan to Visual Studio Code
• List recommendations in a problems view in Visual Studio Code
• Direct navigation to code by clicking on a recommendation
• Highlight relevant code and display recommendations in hover messages
• Recommendations are classified with weakness types
• Create repository analysis from Visual Studio Code
• Clear recommendations in Visual Studio Code
• Search recommendations in the problems view
• Customization of rule set filtering
• Customization of scope filtering
• Warning suppression
• Give feedback (thumbs up/down)
• Other

Web:

• List scans in the AWS Console
• List recommendations in the AWS Console
• Direct navigation to code in Git repository by clicking on a recommendation
• Create repository analysis from the AWS Console
• Search scans in the AWS Console
• Search recommendations in the AWS Console
• Give feedback (thumbs up/down)
• Other

13. If you chose “Other” feature in the last question, tell us which

14. How many issues did you fix?

15. How did you know that you fixed the issues?

16. How did you decide which issues to fix first?

17. How likely are you to use CodeGuru Reviewer with our Visual Studio Code exten-
sion/AWS Console for such tasks in the future? (choose one)
Very unlikely Unlikely Likely Very likely

18. Tell us what needs to be improved.

210

	Acronyms
	Introduction
	Problem Statement
	Common Benchmarks Are Small and Incomplete
	Real-World Issues Often of Limited Interest
	Little Adoption by Developers
	Outline and Publication Details

	Real-World Malware Benchmarking of Android Taint Analyses
	Terminology
	Related Work
	Android Taint Analysis Tools
	Existing Benchmark Suites

	Benchmark Construction Criteria
	The TaintBench Framework
	Part 1—Construction
	Part 2—Evaluation
	Part 3—Inspection

	Real-World Benchmarking
	Part 1—Construction of the TaintBench Suite
	Part 2—Evaluation with the TaintBench Suite
	Part 3—Inspection of the Analysis Results

	Threats to Validity
	Conclusion

	GenCG: A General Approach to Modeling Java Framework Behaviors
	A Motivating Example
	Background
	Entry Points and Lifecycle Modeling
	Inter-Component Communication
	Analysis of Library Methods
	Construction of Application-only Call Graphs with Averroes

	Existing Problems with Averroes's Model
	The GenCG Approach
	Main Improvements
	Sound and Precise Call Graph
	Supporting Detection of ICC Leaks

	Evaluation of GenCG
	Application of GenCG on the Spring Framework
	Handling Annotated Entry Points
	Handling Bean Autowiring
	Implementation Details
	Evaluation with CGBench

	Related Work
	Limitations and Threats to Validity
	Conclusion

	Towards Path-Sensitive Analysis with COVA
	A Motivating Example
	Non-Distributivity
	The Inter-procedural Constraint Analysis in COVA
	The VASCO Framework
	Analysis Domain
	Flow Functions of the Taint Domain
	Flow Functions of the Constraint Domain
	Termination

	Implementation
	Evaluation of COVA
	COVA-assisted Qualitative Analysis of Android Taint-Analysis Results
	Usage of COVA for Targeted Testing Input Generation
	Android Testing Frameworks
	Extended COVA

	Threats to Validity
	Related Work
	Conclusion

	Integrating Static Analyses into IDEs with MagpieBridge
	Related Work
	Approach
	The MagpieBridge Workflow
	The MagpieBridge System

	Integration of Existing Static Tools
	Diagnostics
	Code Lenses
	Hovers
	Repairs

	More Tool Integrations
	Conclusion

	IDE Support for Cloud-based SAST Tools
	Background
	User Interviews
	Methodology
	Result of the User Interviews

	Prototyping
	Second-round Interviews
	Usability Testing
	Methodology
	Quantitative Analysis
	Qualitative Analysis

	Threats To Validity
	Related Work
	Conclusion

	Conclusion and Future Work
	Bibliography
	Supplementary Material of Chapter 2
	Usability Test
	Participants
	Study Design
	Data Collection
	Results

	Figures

	Supplementary Material of Chapter 3
	Figures
	Tables

	Supplementary Material of Chapter 5
	Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach
	Comparison Between MagpieBridge-Based CogniCrypt and CogniCrypt Eclipse Plugin
	Comparison to Other Plugin-Based Approaches

	Supplementary Material of Chapter 6
	Script For User Interviews
	Codes
	Survey For Usability Tests

