
MagpieBridge: A General Approach to Integrating1

Static Analyses into IDEs and Editors2

Linghui Luo3

Heinz Nixdorf Institute, Paderborn University, Germany4

linghui.luo@upb.de5

Julian Dolby6

IBM Research, USA7

dolby@us.ibm.com8

Eric Bodden9

Heinz Nixdorf Institute, Paderborn University & Fraunhofer IEM, Germany10

eric.bodden@upb.de11

Abstract12

In the past, many static analyses have been created in academia, but only a few of them have13

found widespread use in industry. Those analyses which are adopted by developers usually have14

IDE support in the form of plugins, without which developers have no convenient mechanism to use15

the analysis. Hence, the key to making static analyses more accessible to developers is to integrate16

the analyses into IDEs and editors. However, integrating static analyses into IDEs is non-trivial:17

different IDEs have different UI workflows and APIs, expertise in those matters is required to write18

such plugins, and analysis experts are not typically familiar with doing this. As a result, especially19

in academia, most analysis tools are headless and only have command-line interfaces. To make static20

analyses more usable, we propose MagpieBridge—a general approach to integrating static analyses21

into IDEs and editors. MagpieBridge reduces the m × n complexity problem of integrating m22

analyses into n IDEs to m + n complexity because each analysis and type of plugin need be done just23

once for MagpieBridge itself. We demonstrate our approach by integrating two existing analyses,24

Ariadne and CogniCrypt, into IDEs; these two analyses illustrate the generality of MagpieBridge,25

as they are based on different program analysis frameworks—WALA and Soot respectively—for26

different application areas—machine learning and security—and different programming languages—27

Python and Java. We show further generality of MagpieBridge by using multiple popular IDEs28

and editors, such as Eclipse, IntelliJ, PyCharm, Jupyter, Sublime Text and even Emacs and Vim.29

2012 ACM Subject Classification Software and its engineering → Software notations and tools30

Keywords and phrases IDE, Tool Support, Static Analysis, Language Server Protocol31

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.732

Category Tool Insights Paper33

Funding This research was supported by the research training group “Human Centered Systems34

Security” (NERD.NRW) sponsored by the state of North-Rhine Westphalia in Germany and by the35

DFG’s collaborative research center 1119 CROSSING.36

1 Introduction37

Many static analyses have been created to find a wide range of issues in code. Given the38

prominence of security exploits in practice, many analyses focus on security, such as TAJ [59],39

Andromeda [58], HybriDroid [34], FlowDroid [31], CogniCrypt [48] and DroidSafe [44].40

There are also many analyses that address other code quality issues, such as FindBugs [46],41

SpotBugs [23], PMD [17] for common programming flaws (e.g. unused variables, dead code,42

empty catch blocks, unnecessary creation of objects, etc.) and TRACKER [57] for resource43

leaks. Other analyses target code performance, such as J2EE transaction tuning [41]. There44

© Linghui Luo and Julian Dolby and Eric Bodden;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 7; pp. 7:1–7:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:linghui.luo@upb.de
mailto:dolby@us.ibm.com
mailto:eric.bodden@upb.de
https://doi.org/10.4230/LIPIcs.ECOOP.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

are also specialized analyses for specific domains, such as Ariadne [38] for machine learning.45

These analyses collectively represent a large amount of work, as they embody a variety of46

advanced analyses for a range of popular programming languages. To make this effort more47

tractable, many analyses are built on existing program analysis frameworks that provide48

state-of-the-art implementations of commonly-needed building blocks such as call-graph49

construction, pointer analysis, data-flow analysis and slicing, which in turn all rest on an50

underlying abstract internal representation (IR) of the program. Doop [7,33], Soot [21,49],51

Safe [19], Soufflé [22] and WALA [29] are well-known.52

While development of these analyses has been a broad success of programming language53

research, there has been less adoption of such analyses in tools commonly used by de-54

velopers, i.e., in interactive development environments (IDEs) such as Eclipse [8], IntelliJ [13],55

PyCharm [18], Android Studio [1], Spyder [24] and editors such as Visual Studio Code [28],56

Emacs [10], Atom [3], Sublime Text [26], Monaco [16] and Vim [27]. There have been57

some positive examples: the J2EE transaction analysis shipped in IBM WebSphere [12],58

Andromeda was included in IBM Security AppScan [2], both ultimately based on Eclipse59

technology. Similarly, CogniCrypt comprises an Eclipse plugin that exposes the results of its60

crypto-misuse analysis directly to the developer within the IDE. Each of these tools involved61

a substantial engineering effort to integrate a specific analysis for a specific language into a62

specific tool. Table 1 shows the amount of code in plugins for analyses is a significant fraction63

of code in the analysis itself. Given that degree of needed effort, the sheer variety of popular64

tools and potentially-useful analyses makes it impractical to build every combination.65

Tool Analysis (LOC) Plugin (LOC) Plugin/Analysis
FindBugs 132,343 16,670 0.13
SpotBugs 121,841 16,266 0.13
PMD 117,551 33,435 0.28
CogniCrypt 11,753 18,766 1.60
DroidSafe 41,313 8,839 0.21
Cheetah 4,747 864 0.18
SPLlift 1,317 3,317 2.52
Table 1 Comparison between the LOC (lines of Java code) for analysis and the LOC for plugin

While the difficulty of integrating such tools into different development environments has66

lead to poor adoption of these tools and research results in practice, it also makes empirical67

evaluations of them challenging. Evaluations of static analyses have been mostly restricted68

to automated experiments where the analyses are run in “headless” mode as command-line69

tools [31, 50, 53, 62], paying little to no attention to usability aspects on the side of the70

developer. As many recent studies show [35,36,47], however, those aspects are absolutely71

crucial: if program analysis tools do not yield actionable results, or if they do not report72

them in a way that developers can understand, then the tools will not be adopted. So to73

develop and evaluate such tools, researchers need ways to bring tools into IDEs more easily74

and quickly.75

The ideal solution is the magic box shown in Figure 1, which adapts any analysis to any76

editor,1 and presents the results computed by the analysis, e.g., security vulnerabilities or77

other bugs, using common idioms of the specific tool, e.g., problem lists or hovers.78

1 Note: In the following, when we write editor, we mean any code editor, which comprises IDEs.

L. Luo and J. Dolby and E. Bodden 7:3

In this work, we present MagpieBridge,2 a system which uses two mechanisms to realize79

a large fraction of this ultimate goal:80

1. Since many analyses are written using program analysis frameworks, MagpieBridge81

can focus on supporting the core data structures of these frameworks. For instance,82

analyses based on data-flow frameworks can be supported if the magic box can render83

their data-flow results naturally. Furthermore, while there are multiple frameworks, they84

share many common abstractions such as data flow and call graphs, which allows one to85

support multiple frameworks with relative ease.86

2. More and more editors support the Language Server Protocol (LSP) [15], a protocol by87

which editors can obtain information from arbitrary “servers”. LSP is designed in terms88

of idioms common to IDEs, such as problem lists, hovers and the like. Thus, the magic89

box can take information from a range of analyses and render it in a few common tooling90

idioms. LSP support in each editor then displays these in the natural idiom of the editor.91

Our system MagpieBridge exploits these two mechanisms to implement the magic box92

for analyses built using WALA or Soot, with more frameworks under development, and for93

any editor that supports the LSP. In this paper, we present the MagpieBridge workflow,94

explaining the common APIs we defined for enabling integration. We demonstrate two95

existing analyses—CogniCrypt and Ariadne, which are based on different frameworks (Soot96

and WALA), for different application areas (cryptography misuses and machine learning)97

and for different programming languages (Java and Python) into multiple popular IDEs98

and editors (Eclipse, Visual Studio Code, PyCharm, IntelliJ, JupyterLab, Monaco, Vim,99

Atom and Sublime Text) supporting different features (diagnostics, hovers and code lenses)100

using MagpieBridge. We make MagpieBridge publicly available as https://github.101

com/MagpieBridge/MagpieBridge.102

2 In a Chinese legend, a human and a fairy fall in love, but this love angers the gods, who separate them
on opposite sides of the Milky Way. However, on the seventh day of the seventh lunar month each year,
thousands of magpies form a bridge, called 鹊桥 in Chinese and Queqiao in pinyin, allowing the lovers
to meet.

WALA

TAJ

Atom Vim Eclipse VSCode IntelliJ Sublime

MS
Monaco

Monaco Web Editor

...

Magic Box

Emacs

Soot Doop

Tool A Tool B Tool CAndromeda HybriDroid ... CogniCrypt FlowDroid DroidSafe

JupyterLab

Figure 1 The desired solution: a magic box that connects arbitrary static analyses to arbitrary
IDEs and editors

ECOOP 2019

https://github.com/MagpieBridge/MagpieBridge
https://github.com/MagpieBridge/MagpieBridge
https://github.com/MagpieBridge/MagpieBridge

7:4 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

2 Background and Related Work103

Existing tools and frameworks104

Given the importance of programming tools for IDEs, there have been a variety of efforts105

to provide them, both commercial and open source. We here survey some significant ones,106

focusing on those that use WALA [40] or Soot [49,60] and hence are most directly comparable107

to our work.108

There have been a few commercial tools, notably IBM AppScan [2] and RIGS IT109

Xanitizer [30]. Both products make use of WALA and target JavaScript among other110

languages. They comprise views to display analysis results as annotations to the source code,111

and allow for some triaging of the often longish lists of potential vulnerabilities within the112

IDEs. Among other issues, AppScan finds tainted flows and allows the user to focus on a113

specific flow through the program, although the user needs to decide what flow is of interest.114

There has been a wider variety of open-source tools. WALA has been used in e.g.115

JOANA [43, 45]. Soot is used in the widely adopted open-source crypto-misuse analyzer116

Eclipse CogniCrypt [48], and is also part of the research tools Cheetah [36], SPLlift [32] and117

DroidSafe [44]. All tools named so far integrate with the Eclipse IDE.118

JOANA focuses on Java, including Android, and provides a range of advanced analyses119

based on information flow control.120

CogniCrypt is a tool to detect misuses of cryptographic APIs in Java and Android applica-121

tions. Its current UI integration is relatively basic, offering simple error annotations in the122

program code and the problems view. CogniCrypt further comprises an XText-based [39]123

Eclipse plugin that allows developers to edit API-specification files using syntax high-124

lighting and code completion. Those specification files directly determine the definition125

of the static analysis.126

SPLlift is a research tool to analyze Java-based software product lines. Its UI is an extension127

to FeatureIDE [56], which allows it to show variations in the product line’s code base128

through color coding. Detected programming errors are shown as code annotations and129

in the problems view. FeatureIDE itself is also an extension to Eclipse.130

Cheetah is a research prototype for the just-in-time static taint analysis within IDEs. In131

Cheetah, the analysis is triggered upon saving a source-code file, but in its case the132

analysis is automatically prioritized to provide rapid updates to the error messages in133

those code regions that are in the developer’s current scope. From there the analysis134

works its way outwards, potentially reporting errors in farther parts of the program only135

after several seconds or even minutes. Due to this mechanism, Cheetah requires the IDE136

to provide information about which file edit caused the analysis to be triggered, and what137

the project layout looks like. Cheetah also provides a somewhat richer UI integration138

than the previously named tools. For instance, when users select an individual taint-flow139

message in the problems view, it highlights in the code all statements involved in that140

particular taint, and also shows a list of those statements in a separate view—useful in141

case those are scattered across multiple source code files.142

Analysis based on Doop [7, 33] has been experimentally integrated into the ProGuard143

optimizer for Android applications [61]. This is a once-off integration rather than a framework144

for Doop analyses, and it is focused on the build processs rather than the IDE itself. Still, it145

reflects the special-purpose integrations that show how analysis tends to be used.146

Until now, program-analysis frameworks have focused on making it easier to develop147

analyses, with supportive infrastructure for basics such as scalable call graph, pointer analysis,148

L. Luo and J. Dolby and E. Bodden 7:5

and data-flow analysis. There have been presentations3 and tutorials4 at conferences which149

have provided both introductions and detailed tutorials for analysis construction; however,150

until now, there has been little focus on assisting with integrating such analyses into usable151

tools.152

Language Server Protocol (LSP)153

The Language Server Protocol (LSP) [15] is a JSON-based RPC protocol originally developed154

by Microsoft for its Visual Studio Code to support different programming languages. LSP155

follows a client/server architecture, in which “clients” are typically meant to be code editors,156

i.e., IDEs such as IntelliJ, Eclipse, etc., or traditional editors such as Visual Studio Code,157

Vim, Emacs or Sublime Text. Those clients can trigger certain actions in “servers”, e.g. by158

opening a source-code file. Those servers can be of different flavours, but LSP allows them to159

contribute certain contents to the editor’s user interface, such as code annotations, list items160

or hovers. We will give concrete examples, including screenshots, in Section 4. As we show in161

this work, the LSP’s design lends itself to implement static code analysis tools as servers. In162

such a design, clients trigger analysis servers through LSP, and those servers communicate163

back their results through LSP as well, causing analysis results to automatically be shown in164

the client through the respective editor’s native interfaces.165

SASP and SARIF166

The Static Analysis Server Protocol (SASP) [25], although similar in name to LSP, is a167

distinctly different protocol. Started in 2017 by the static code analysis vendor GrammaTech,168

it describes a standardized communication protocol to facilitate communication between static169

analysis tools and consumers of their results. Compared to LSP, it supports a richer data-170

exchange format that is explicitly fine-tuned to static analysis. This is realized through the171

Static Analysis Results Interchange Format (SARIF) [20,25] that SASP uses to communicate172

static-analysis results from servers to clients. Generally, SASP therefore promises a more173

tight coupled integration compared to LSP static analyses into editors, potentially needing174

more work on the server. Also, as of now, SASP and SARIF have seen little adoption by175

tool vendors. Currently, the standard is mostly put forward by GrammaTech, which through176

SASP offers third-party static analysis tools to allow a triaging of those tools’ results in177

GrammaTech’s CodeSonar [5]. SARIF exporters currently exist for some few static analysis178

tools, including CogniCrypt [48], the Clang Static Analyzer [4], Cppcheck [6], and Facebook179

Infer [11], which makes them amenable for an integration through SASP. However, right now,180

CodeSonar appears to be the only client ready to consume SARIF results, and it is unclear181

whether this will change in the near future. It is for this reason that MagpieBridge builds,182

for now, on top of LSP instead of SASP and SARIF. Furthermore, SASP is currently still in183

the early stage of its development and there exists no formal specification of the protocol [25],184

which makes it hard to compare it to LSP in detail and hard to use for our work.185

3 e.g. https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
4 e.g. http://wala.sourceforge.net/wiki/index.php/Tutorial

ECOOP 2019

https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
http://wala.sourceforge.net/wiki/index.php/Tutorial

7:6 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

3 Approach186

3.1 The MagpieBridge Workflow187

MagpieBridge uses the Language Server Protocol to integrate program analyses into188

editor and IDE clients. MagpieBridge is implemented using the Eclipse LSP4J [9] LSP189

implementation based on JSON-RPC [14], but MagpieBridge hides LSP4J details and190

presents an interface in terms of high-level analysis abstractions. The overall workflow is191

shown in Figure 2.192

There are multiple mechanisms by which LSP-based tools can be used, but the most193

common mechanism is that an IDE or editor is configured to launch any desired tools. Each194

tool is built as a jar file based on the MagpieServer, with a main method that creates a195

MagpieServer (Listing 1), then adds the desired program analyses (ServerAnalysis in196

Listing 2) with addAnalysis, and then launches MagpieServer with launch so that it197

receives messages. This is shown with the addAnalysis and launch edges in Figure 2. With198

such a jar, MagpieBridge can be used simply by configuring an editor to launch it. Figure 3199

shows our Sublime Text setup to launch both Ariadne and CogniCrypt analyses. The user200

merely obtains jar files of the analyses and sets up Sublime Text to launch each of them for201

the appropriate languages. That is all the setup that is needed.202

Based on LSP4J, there are several mechanisms for sending and receiving messages. Most203

clients/editors simply launch the server and then expect it to handle messages using standard204

I/O (e.g. Eclipse, IntelliJ, Emacs and Vim); however some clients expect to talk using205

a well-known socket (e.g. Spyder), Web-based tools communicate using WebSockets (e.g.206

LSP4J

addAnalysis(ServerAnalysis)

analyze(Collection<Module>, MagpieServer)

consume(Collection<AnalysisResult>)

didOpen(DidOpenTextDocumentParams)

publishDiagnostics(PublishDiagnosticsParams)

launch(…)

hover(TextDocumentPositionParams)

response: Hover

codeLens(CodeLensParams)

response: CodeLens

didChange(DidChangeTextDocumentParams)

analyze(Collection<Module>, MagpieServer)

...

...

ServerAnalysis MagpieServer LSP Client

...

Tim
e

Initialize(InitializeParams)

IProjectService
setRootPath(…)

didSave(DidSaveTextDocumentParams)

response: InitializeResult

Figure 2 Overall MagpieBridge workflow

L. Luo and J. Dolby and E. Bodden 7:7

Figure 3 Configuration for Sublime Text to launch MagpieServer

Jupyter and Monaco) and only few tools support both standard I/O and socket (e.g. Visual207

Studio Code). Our MagpieServer supports all these channels out of the box and can be208

configured to communicate with a client using any of the channels.209

Once MagpieServer is launched, it interacts with the client tool using standard LSP210

mechanisms:211

The first step is initialization. The client sends an initialize message to the server,212

which includes information about the project being analyzed, such as its project root213

path. MagpieServer calls setRootPath on each IProjectService (service that resolves214

project scope such as source code path and library code path) instance to initialize project215

path information. MagpieBridge currently understands Eclipse, Maven and Gradle216

projects. MagpieServer also sends the response InitializeResult which declares its217

capabilities back to the client. This is shown in the upper portion of Figure 2218

Subsequently, the client informs MagpieServer whenever it works with a file: the didOpen,219

didChange and didSave messages are sent to the server whenever files are opened, edited220

and saved respectively. These messages allow MagpieBridge to call the analysis via the221

analyze method whenever anything changes. Each analysis server decides the granularity222

of when it actually runs analysis and how much analysis it does. This is shown with the223

didOpen and analyze edges in Figure 2224

As shown in the rest of Figure 2, analysis uses the consume method to report analysis225

results of type AnalysisResult (Listing 4) to MagpieServer, which handles them via226

the appropriate LSP mechanism, specified by the kind method (Listing 4), which returns227

a Kind (Listing 5):228

Diagnostic denotes issues found in the code, corresponding to lists of errors and warnings229

that might be reported by a compiler. Tools typically report them either in a list230

of results or highlight the results directly in the code. When the program analysis231

provides such results via consume, MagpieServer reports them to the client tool with232

the LSP publishDiagnostics API.233

Hover denotes annotations to be displayed for a specific program variable or location.234

It could be used to report e.g. the type of a variable or the targets of a function235

call. Tools often show them when the cursor highlights a specific location. When the236

program analysis provides such results via consume, MagpieServer keeps them and237

reports them to the client tool as responses to LSP hover API calls by the client tool.238

CodeLens denotes information to be added inline in the source code, analogous to239

ECOOP 2019

7:8 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

generated comments. Tools typically report them as distinguished lines of text inserted240

between lines of source code. When the program analysis provides such results via241

consume, MagpieServer keeps them and reports them to the client tool as responses242

to LSP codeLens API calls by the client tool.243

These analysis results have a position method that returns a Position (Listing 6)244

denoting the source location to which the result pertains. The result requires a precise245

location based on starting and ending line and column numbers, which is required246

by the LSP protocol. Note that the Position of MagpieBridge implements the247

Java Comparable interface; MagpieBridge exploits this to store analysis results in248

NavigableMap structures so that it can find the nearest result if a user hovers in a249

location near result, e.g. some whitespace immediately after a variable or expression.250

public class MagpieServer implements LanguageServer, LanguageClientAware{
protected LanguageClient lspClient;
protected Map<String, IProjectService> languageProjectServices;
protected Map<String, Set<ServerAnalysis>> languageAnalyses;

public void addProjectService(String language, IProjectService projectService){...}
public void addAnalysis(String language, ServerAnalysis analysis){...}
public void doAnalyses(String language){...}
public void consume(Collection<AnalysisResult>){...}

protected Consumer<AnalysisResult> createDiagnosticConsumer(){...}
protected Consumer<AnalysisResult> createHoverConsumer(){...}
protected Consumer<AnalysisResult> createCodeLensConsumer(){...}
...

}

Listing 1 The core of the server

public interface ServerAnalysis{
public String source();
public void analyze(Collection<Module> files, MagpieServer server);

}

Listing 2 Interface for defining analysis on the server

public interface IProjectService {
public void setRootPath(Path rootPath);

}

Listing 3 Interface for defining service which resolves project scope

251

L. Luo and J. Dolby and E. Bodden 7:9

public interface AnalysisResult {
public Kind kind();
public String toString(boolean useMarkdown);
public Position position();
public Iterable<Pair<Position,String>> related();
public DiagnosticSeverity severity();
public Pair<Position, String> repair();

}

Listing 4 Interface for defining analysis result

public enum Kind {
Diagnostic, Hover, CodeLens

}

Listing 5 Enum for defining kinds of analysis results

public interface Position extends Comparable {
public int getFirstLine();
public int getLastLine();
public int getFirstCol();
public int getLastCol();
public int getFirstOffset();
public int getLastOffset();
public URL getURL();

}

Listing 6 Interface for defining position

3.2 The MagpieBridge System252

We explain our MagpieBridge system with an overview in Figure 4. MagpieBridge253

needs to support various analysis tools that were built on top of different frameworks, e.g.,254

TAJ, Andromeda and HybriDroid use WALA, while CogniCrypt, FlowDroid and DroidSafe255

rely on Soot and many other analyses are based on Doop. These analysis frameworks have256

different IRs, which MagpieBridge needs to use to generate analysis results. One key257

requirement for all the frameworks supported by MagpieBridge is very precise source-code258

MagpieServer

Source
Code

Library
Code

Bytecode
Front Ends

WALA IR

Soot IR

Doop IR

Source-Code
Position

Information Soot-based
Analysis

Doop-based
Analysis

WALA-based
Analysis

Analysis
Results

WALA-Soot
IRConverter

WALA-Doop
IRConverter

LSP
Notifications

WALA
Source-Code
Front Ends

Eclipse
IntelliJ
Emacs
Atom
Vim

VSCode
MS Monaco

Sublime

...

LSP Client

LSP

Existing Flow

Work in progress

Results
Mapping

2

1

3

Figure 4 Overview of our MagpieBridge system

ECOOP 2019

7:10 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

mappings, since in LSP all the messages communicate using starting and ending line and259

column numbers. In the following we explain how MagpieBridge achieves this requirement260

for WALA-based analyses, Soot-based analyses and Doop-based analyses respectively.261

3.2.1 WALA-based Analysis262

The simplest code path in MagpieBridge (flow 1 in Figure 4) uses WALA source language263

front ends for creating IR on which to perform analysis. WALA comprises both bytecode264

and source-code front ends for different languages (Java, Python and JavaScript), and the265

source-code front end preserves source-code positions very well. This information can be266

consumed later in the LSP notifications, since it is kept in WALA’s IR. WALA’s IR is a267

traditional three-address code in Static Single Assignment (SSA) form, which is translated268

from WALA’s Common Abstract Syntax Tree (CAst).269

The approach to source-code front ends for WALA is using existing infrastructure for270

each supported language: Eclipse JDT for Java, Mozilla Rhino for JavaScript and Jython271

for Python. Each of these front ends is maintained with respect to its respective language272

standards, and all the front ends provide precise mappings of source locations for constructs.273

To provide detailed source mapping for the generated IR, each WALA function body has274

an instance of DebuggingInformation (Listing 7) which allows MagpieBridge to map275

locations from requests to IR elements at a very fine level.276

public interface DebuggingInformation {
Position getCodeBodyPosition();
Position getCodeNamePosition();
Position getInstructionPosition(int instructionOffset);
String[][] getSourceNamesForValues();
Position getOperandPosition(int instructionOffset, int operand);
Position getParameterPosition(int param);

}

Listing 7 Debugging information interface

277

Listing 7 details how much source mapping information is available. getCodeBodyPosition278

is the source range of the entire function, and getCodeNamePosition is the position of just279

the name in the body. getInstructionPosition is the source position of a given IR instruc-280

tion. getOperandPosition is the source position of a given operand in an IR instruction.281

getParameterPosition is the position of a given parameter declaration in the source.282

3.2.2 Soot-based Analysis283

Soot comprises a solid Java bytecode front end. The bytecode only has the line number of284

each statement. This is not sufficient to support features such as hover, fix and codeLens285

in an editor. For those features, position information about variable, expressions, calls and286

parameters are necessary. However, they are lost in the bytecode. Soot further comprises287

source-code front ends. Such front ends, however, require frequent updates due to the288

frequently changing specification of the Java source language, which has caused Soot’s289

source-code front ends to become outdated. Besides, Soot IR was not designed to keep290

precise source-code position information, e.g., there is no API for getting the parameter291

position in a method. Our approach is to take WALA’s source-code front end to generate292

WALA IR and convert it to Soot IR. Soot has multiple IRs, the most commonly used IR293

L. Luo and J. Dolby and E. Bodden 7:11

is called Jimple [60]. Jimple is also a three-address code and has Java-like syntax, but is294

simpler, e.g., no nested statements. Opposed to WALA IR, Jimple is not in SSA-form. Both295

WALA and Soot are implemented in Java and manipulate the IR through Java objects. This296

makes the conversion between the IRs feasible. In particular, we have implemented the297

WALA-Soot IRConverter and defined the common APIs (Listing 4) to encode analysis results,298

as well as the MagpieServer (Listing 1) that hosts the analysis. Currently the WALA-Soot299

IRConverter only converts WALA IR generated by WALA’s Java source-code front end. In300

fact, WALA uses a pre-IR before generating the actual WALA IR in SSA-form, and this301

non-SSA pre-IR is actually the IR that we convert to Jimple. Since also Jimple is not in302

SSA, this conversion is more direct. This pre-IR contains 24 different instructions as shown303

in Figure 5. After studying both IRs, we found out that 15 instructions in WALA IR can be304

converted to JAssignStmt in Jimple. Most of the times the conversion is one-to-one, only a305

few cases are one-to-many. The precise source-code position information from WALA IR is306

encapsulated in the tags (annotations) of the converted Soot IR. In the future, we plan to307

convert WALA IR from front ends of other languages such as Python and JavaScript to a308

potentially extended version of the Soot IR.309

The flow 2 in Figure 4 for integrating Soot-based analysis starts by dividing the analyzed310

program code into application source code and library code (which can be in binary form).311

The source code is parsed by one of WALA’s source-code front end and it outputs WALA312

IR, as well as precise source code position information associated in the IR. For a Soot-313

based analysis, the WALA IR is translated by a WALA-Soot IRConverter into Soot IR314

WALA IR Soot IR
1. SSAArrayStoreInstruction
2. SSAArrayLoadInstruction
3. SSAArrayLengthInstruction
4. AstLexicalWrite
5. AstLexicalRead
6. EnclosingObjectReference
7. SSACheckCastInstruction
8. SSALoadMetadataInstruction
9. SSAUnaryOpInstruction
10. SSAPutInstruction
11. SSANewInstruction
12. SSAInstanceofInstruction
13. SSAConversionInstruction
14. SSABinaryOpInstruction
15. SSAGetInstruction
16. SSAGetCaughtExceptionInstruction
17. SSAMonitorInstruction
18. SSASwitchInstruction
19. SSAThrowInstruction
20. AstJavaInvokeInstruction
21. SSAConditionalBranchInstruction
22. SSAReturnInstruction
23. SSAGotoInstruction
24. AstAssertionInstruction

JAssignStmt

JIdentityStmt
JEnterMonitorStmt/JExitMonitorStmt
JLookupSwitchStmt
JThrowStmt
JInvokeStmt/JAssignStmt
JIfStmt
JReturnStmt/JReturnVoidStmt
JGotoStmt
synthetic static field +JIfStmt

Figure 5 Conversion from WALA IR to Soot IR

ECOOP 2019

7:12 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

public class ExampleAnalysis implements ServerAnalysis{

@Overide
public String source(){

return "Example Analysis"
}

@Overide
public void analyze(Collection<Module> sources, MagpieServer server){

ExampleTransformer t = getExampleTransformer();
loadSourceCodeWithWALA(sources);
JavaProjectService service = (JavaProjectService)

server.getProjectService("java");
loadLibraryCodeWithSoot(service.getLibraryPath());
runSootPacks(t);
List<AnalysisResult> results = t.getAnalysisResults();
server.consume(results);

}
...

}

public class Example{

public static void main(String... args){
MagpieServer server = new MagpieServer();
IProjectService service = new JavaProjectService();
ExampleAnalysis analysis = new ExampleAnalysis();
String language = "java";
server.addProjectService(language, service);
server.addAnalysis(language, analysis);
server.launch(...);

}
}

Listing 8 The MagpieServer runs a Soot-based analysis

(Jimple). The library code is parsed by Soot’s bytecode front end and then complements the315

program’s IR obtained from the source code. The Soot IR in Figure 4 thus consists of two316

parts: Jimple converted by the WALA-Soot IRConverter, which represents the source-code317

portion/application code of the program, and Jimple generated by Soot’s bytecode front end318

which represents the library code. Based on the composite Soot IR, Soot further conducts319

a call graph and optionally also pointer analysis, which can then be followed by arbitrary320

data-flow analyses.321

Listing 8 shows an example of running a Soot-based analysis ExampleTransformer322

(analyses are called transformers in Soot) on the MagpieServer. The ExampleTransformer323

accesses the program through the singleton object Scene in order to analyze the program.324

Once the MagpieServer receives the source code, the method loadSourceCodeWithWALA325

parses the source code, converts it to Soot IR with the WALA-Soot IRConverter and stores326

the IR in the Scene. The class JavaProjectService resolves library path for the current327

project. loadLibraryCodeWithSoot loads the necessary library code from the path and adds328

the IR into Scene. The method runSootPacks invokes Soot to build call-graph and run the329

actual analysis. The analysis results will be then consumed by the server. In this example,330

only the source files sent to the server are analyzed together with the library code. However,331

it can be configured to perform a whole-program analysis, since the source code path can332

also be resolved by JavaProjectService.333

We explain how the class JavaProjectService which implements IProjectService334

L. Luo and J. Dolby and E. Bodden 7:13

resolves the full Java project scope, i.e., source code path and library code path. As335

specified in LSP, the editors send the project root path (rootURI) to the server in the first336

request initialize. Library and source code path can be resolved by using the build-tool337

dependency plugins (e.g. caching results of mvn dependency:list) or parsing the configuration338

(e.g. pom.xml, build.gradle) and source code files located in the root path. Project structure339

conventions for different kinds of projects are also considered in MagpieBridge. For more340

customized projects, MagpieBridge also allows the user to specify the library and source341

code path manually as program arguments.342

3.2.3 Doop-based Analysis343

Doop uses Datalog to allow for declarative analysis specifications, encoding instructions as344

Datalog relations as well as instruction source positions. There is code to convert from the345

WALA Python IR to Datalog, and that captures both the semantics of statements as well346

as source mapping, and these declarations capture the information needed for analysis tool347

support. For instance, there is a Datalog relation that captures instruction positions and is348

generated directly from WALA IR:349

.decl Instruction_SourcePosition(?insn:Instruction,350

?startLine:number, ?endLine:number, ?startColumn:number, ?endColumn:number)351

This code has been used experimentally for analysis using Doop of machine code written352

in Python. This code path could be used to express analyses in editors using MagpieBridge,353

and such work is under development.354

4 Demonstration355

To make MagpieBridge more concrete, we use two illustrative analyses, based on different356

frameworks—Soot and WALA, respectively—for different languages—Java and Python—in357

different domains—security and bug finding—both in a range of editors:358

CogniCrypt analyzes how cryptographic APIs are used in a program, and reports a variety359

of vulnerabilities such as encryption protocols being misused or when protocols are used360

in situations where they should not. The tool then also gives suggestions on how to fix361

the problem. CogniCrypt comprises a highly efficient demand-driven, inter-procedural362

data-flow analysis [55] based on Soot, and has its own Eclipse-based plugin. As Table 1363

shows, its plugin actually required substantially more code than the analysis itself. The364

plugin also is limited to Eclipse. We illustrate what it looks like to use CogniCrypt in365

multiple tools using MagpieBridge. To keep exposition simple, we focus on a case in366

which a weak encryption mode is used (Electronic Codebook Mode, ECB). In the general367

case the analysis can also report complex flows through the program. Screenshots in368

Figure 6, Figure 7, Figure 8 and Figure 9 show the crypto warning reported by CogniCrypt369

in different editors. As we can see, only the call Cipher.getInstance with the insecure370

parameter is marked in each editor.371

Ariadne analyzes how tensor (multi-dimensional array) data structures are used in machine-372

learning code written in Python, and reports a range of information. It presents basic373

tensor-shape information for program variables, and finds and fixes certain kinds of374

program bugs. A key operation is reshaping a tensor: the reshape operation takes a375

tensor and a new shape, and returns a new tensor with the desired shape when that is376

possible. To simplify complex tensor semantics, a tensor can be reshaped only when its377

total size is equal to size of the desired new shape. Another operation is performing a378

ECOOP 2019

7:14 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

convolution, e.g. conv2d, which requires the input tensor to have a specific number of379

dimensions. We illustrate cases of these bugs, and how they are shown in multiple editors380

(Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14).381

We illustrate how the aspects of LSP used by MagpieBridge are rendered in a variety of382

editors; while there are common notions such as a list of diagnostics, different tools make383

different choices in how those elements are displayed. We describe in turn several LSP aspects384

and how analysis information is displayed using them.385

4.1 Diagnostics386

The most straightforward interface is for an analysis to report a set of issues, but even this387

simple concept is handled differently in different editors.388

Some editors have a problem view, i.e., a list summarizing all outstanding issues. An389

example of this interface is Sublime Text, illustrated in Figure 8 where a warning about390

weak encryption is shown in a list.391

Some editors do not have such a list, but choose to highlight issues directly in the code. An392

example of this interface is Monaco, illustrated in Figure 7; the same warning about weak393

encryption is shown inline. To minimize clutter, editors typically make such warnings as394

hovers, and we show it displayed in Monaco. A somewhat different visualization of the395

same idea is in Figure 13, in which Atom shows an invalid use of reshape in Tensorflow.396

Some editors do both. An example of this interface is Eclipse, illustrated in Figure 6397

where a warning about weak encryption is shown both inline and in a list. Again to398

minimize clutter, the inline message is realized via a hover.399

Note that all issues displayed here are computed by the very same analysis in all editors and400

rendered as the same LSP objects; however, they appear natural in each editor, due to the401

editor-specific LSP client implementations.402

4.2 Code Lenses403

Code lenses look like comments, but are inserted into the code by analyses and are used to404

reflect generally-useful information about the program. An example is shown in Figure 10,405

in which the shapes of tensors are listed explicitly for various program variables and function406

arguments.407

4.3 Hovers408

Hovers are used to reflect generally-useful information about the program, but, unlike code409

lenses, they are visible only on demand. As such, an analysis can sprinkle them liberally410

in the program and they will not be distracting since they are only visible when needed.411

Different tools have different ways of user interaction. In Figure 11, the user hovers over the412

variable x_dict in PyCharm to reveal the shape of tensors that it holds. In Figure 12, the413

user enters a Vim command with the cursor over the variable x_dict.414

4.3.1 Repairs415

LSP provides the ability to specify fixes for diagnostics; a diagnostic can specify replacement416

text for the text to which the given diagnostic applies. The method repair() in the interface417

AnalysisResult is designed exactly for this purpose (see Listing 4). Figure 14 shows an418

example of this: the top half shows an error report in Visual Studio Code that a call to419

conv2d is invalid, since such calls require a tensor with four dimensions whereas the provided420

L. Luo and J. Dolby and E. Bodden 7:15

Figure 6 Insecure crypto warning in Eclipse

Figure 7 Insecure crypto warning in Monaco

Figure 8 Insecure crypto warning in Sublime Text

Figure 9 Insecure crypto warning in IntelliJ

ECOOP 2019

7:16 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

Figure 10 Code lenes showing tensor types in JupyterLab

Figure 11 Hover tip showing tensor types in PyCharm

Figure 12 Hover tip showing tensor types in Vim

Figure 13 Diagnostic warning showing an incompatible reshape in Atom

Figure 14 Diagnostic error showing fixable incorrect dimensions for conv2d. Error shown in
Visual Studio Code and quick fix in Emacs.

L. Luo and J. Dolby and E. Bodden 7:17

argument has only 2. However, the analysis determines that a plausible fix is to reshape421

the provided argument to have more dimensions, and the lower part of the figure shows a422

prompt, in Emacs, suggesting a reshape call to insert.423

5 Comparison Between MagpieBridge-Based Approach and424

Plugin-Based Approach425

While MagpieBridge enables analyses to run in a larger set of IDEs, the question remains426

of how the support in any specific IDE using MagpieBridge compares to a custom-built427

plugin for that same IDE. Because most analysis tools do not have integration with most428

IDEs, we are going to focus our comparison on one existing combination: the CogniCrypt429

plugin for Eclipse. Afterwards, we discuss in more general terms the range of functionality430

exploited by custom plugins that is supported by LSP.431

5.1 Comparison Between MagpieBridge-Based CogniCrypt and432

CogniCrypt Eclipse Plugin433

The CogniCrypt Eclipse Plugin [48] consists of two components: code generation, which434

generates secure implementations for user-defined cryptographic programming tasks, and435

cryptographic misuse detection, which runs static code analysis in the background and436

reports insecure usage of cryptographic APIs. MagpieBridge focuses on analysis, and so437

we do not consider the code-generation component here. For comparison, we integrated the438

static crypto analysis of CogniCrypt with MagpieBridge into Eclipse IDE.439

Figure 15 and Figure 16 are screenshots in which the original CogniCrypt Eclipse440

Plugin reports insecure crypto warnings. In comparison, Figure 17 shows our CogniCrypt-441

integration with MagpieBridge. Figure 15 shows two buttons that CogniCrypt adds to442

the toolbar: “Generate Code For Cryptographic Task” and “Apply CogniCrypt Misuse443

to Selected Project”. By clicking the latter, one triggers the misuse detection using the444

plugin in its default configuration. The plugin can also be configured to trigger the analysis445

whenever a Java file is saved. On the other hand, MagpieBridge-based CogniCrypt starts446

the analysis automatically whenever a Java file is opened or saved. In either case, after the447

analysis has been run, any detected misuses are indicated in Eclipse in several ways, which448

the corresponding numbers show in Figure 15 and Figure 17:449

1. In the Package Explorer view, the error ticks appear on the affected Java element and450

their parent elements.451

2. In the Problems view, the detected misuses are listed as errors.452

3. The editor tab is annotated with an error marker.453

4. In the editor’s vertical ruler / gutter, an error marker is displayed near the affected line.454

As shown in Figure 16, one can hover over an error marker next to the affected line to view455

the description of the misuse. The appearance of the MagpieBridge-based and plugin-based456

CogniCrypt is rather similar, with just a few differences:457

MagpieBridge-based CogniCrypt does not change the appearance of the IDE. To work458

with the MagpieServer which runs the crypto analysis, end-users do not have to do459

anything different. The analysis runs automatically whenever a Java file is opened or460

saved by an end-user. In contrast, in the Eclipse Plugin, one can trigger the analysis461

manually, or (optionally) have it started automatically whenever a file is saved.462

Results are indicated similarly in the CogniCrypt Eclipse Plugin MagpieBridge-based463

CogniCrypt; however, in MagpieBridge-based CogniCrypt in addition to the error464

markers, squiggly lines appear under the affected lines.465

ECOOP 2019

7:18 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

Figure 15 The appearance of CogniCrypt Eclipse Plugin

Figure 16 CogniCrypt Eclipse Plugin: insecure crypto warning message shown by hovering

In MagpieBridge-based CogniCrypt, the hover message also includes a quick fix that466

can replace the insecure parameter AES/ECB/PKCS5Padding with a secure parameter467

ASE/CBC/PKCS5Padding automatically. Since MagpieBridge preserves the precise source468

code position from the WALA source-code front end, e.g., the exact code range (start-469

ing/ending line/column numbers) of each parameter of a method call, we were able to470

build such quick fix easily with the codeAction feature supported by LSP. Such quick fix471

is not available in the CogniCrypt Eclipse Plugin, although the warning message already472

indicates what a secure parameter should look like.473

Another difference is that, since MagpieBridge does not add buttons to the IDE, it474

needs to invoke the analysis automatically. When the end-user changes the opened file, the475

MagpieServer clears the warnings when it receives the didChange notification from the IDE.476

The analysis is then restarted whenever the end-user saves the file, i.e., the MagpieServer477

receives a didSave notification. Once the MagpieServer receives the notification from the478

Eclipse IDE, it resolves the source code and library code path required for the inter-procedural479

crypto analysis. This analysis is all asynchronous, so that the analysis always runs in the480

background and updated error messages are shown once they are available. If they want to,481

end-users have the ability to connect and disconnect the MagpieServer at runtime, e.g., via482

“Preferences” in Eclipse IDE.483

L. Luo and J. Dolby and E. Bodden 7:19

Figure 17 The appearance of MagpieBridge-based CogniCrypt: insecure crypto warning
message and quick fix shown by hovering

5.2 Comparison to Other Plugin-Based Approaches484

As shown in Figure 18, LSP offers a set of UI features to present the analysis results to485

end-users that are sufficient to capture the majority of UI features used in a range of existing486

plugins for a single analysis tool in a specific IDE. Most of the plugin approaches we identified487

were implemented as Eclipse plugins (Cheetah [37], SpotBugs [23] and ASIDE [63]), but488

some of them were created for other popular IDEs such as Android Studio (FixDroid [52]),489

IntelliJ (wIDE [51]) and Visual Studio (GhostFactor [42]). Figure 18 shows the comparison490

between features that can be supported with LSP to features supported by these existing491

plugin approaches.492

Some plugins do use IDE features that are not explicitly supported by LSP; however,493

Feature Comparison

Feature LSP-based
Approach

FixDroid
(Android Studio)

wIDE
(IntelliJ)

GhostFactor
(Visual Studio)

Cheetah
(Eclipse)

SpotBugs
(Eclipse)

ASIDE
(Eclipse)

Plugins
support the
feature

Warning Marker 5

Code Highlighting 4

Code Actions
(quick fix, code
generation)

3

Hover Tips 6

Pop-ups 2

Code Change Detection 2

Customized Icons 3

Customized Views 3

Customized Wizards 1

Figure 18 Feature comparison between LSP-based approach and other plugin-based approaches

ECOOP 2019

7:20 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

there are often analogs in LSP that could be used instead. For instance, Cheetah uses a494

custom view, essentially a separate window panel in the IDE, to show an example data-flow495

trace for a bug; in LSP, related information capturing a trace can be attached to problems496

as illustrated in Figure 14. Other uses of custom views and wizards are mainly for analysis497

configuration. Simple forms of such analysis configuration could be supported by the message498

protocol in LSP.499

One minor feature unsupported by LSP appeared in the plugins: customized icons (see500

Figure 19, Figure 20 and Figure 21) are not supported by the LSP-based approach, since501

that requires changes to the appearance of the IDEs, which LSP intends not to. Although502

studies have shown customized icons are useful to catch end-users’ attention [52, 54, 63], it is503

not clear if it is more effective than the default error icon supported by each editor.504

As we can see in Figure 18, the major features such as hover tips, warning marker and505

code highlighting, which are supported by a majority of the plugins, can be supported by an506

LSP-based approach. However, LSP support varies across IDEs, both in what features are507

handled and how they are shown. In LSP, hover tips are specified as the hover request sent508

from the client to the server, warning marker can be realized by the publishDiagnostics509

notification and documentHighlight is the corresponding request for code highlighting.510

However, the implementation of documentHighlight varies from editor to editor, since the511

specification for this feature in LSP is unclear. Most plugins listed in Figure 18 support code512

highlighting. This features means changing the background color of affected lines of code as513

shown in Figure 19, Figure 20 and Figure 21. While Visual Studio Code limits this feature to514

only highlights all references to a symbol scoped in a file, sublime Text choses an underline515

for highlighting (see Figure 23). In addition, there is no possibility with LSP to specify the516

background color used in this feature, all editors have their pre-defined colors.517

Some advanced features such as code actions (we have shown quick fix with Mag-518

pieBridge-based CogniCrypt), pop-ups and code change detections can also be supported519

by LSP. There are two interfaces (showMessage and showMessageRequest) defined in LSP520

which are implemented as pop-up windows in editors. Figure 24 shows a message sent from a521

server to the Eclipse IDE that is displayed in a pop-up window. Where more interactions are522

required, the interface showMessageRequest allows to pass actions and wait for an answer523

from the client. Figure 25 shows a pop-up windows with a message and available actions in524

Visual Studio Code.525

Features that are not supported by LSP for now can be extended to LSP in the future,526

since LSP is a moving target with ever-growing functionality and support. One just has to527

keep in mind that, as the LSP is extended, the IDEs/editors that support it, might require528

extensions as well.529

Figure 19 Cheetah: code highlighting, hover tips, customized icon and views

L. Luo and J. Dolby and E. Bodden 7:21

Figure 20 FixDroid: code highlighting, hover tips and customized icon

Figure 21 ASIDE: code highlighting and customized icon

Figure 22 wIDE: customized wizard

Figure 23 Highlighting in Sublime Text

Figure 24 Pop-up in Eclipse

Figure 25 Pop-up with actions in Visual Studio Code

6 Conclusion and Future Work530

The difficulty of integrating static tools into different IDEs and editors has caused little531

adoption of the tools by developers and researchers, and MagpieBridge addresses this532

problem by providing a general approach to integrating static analyses into IDEs and editors.533

MagpieBridge uses the increasingly popular Language Server Protocol and supports from534

rich analysis frameworks, WALA and Soot. We have shown MagpieBridge supporting535

CogniCrypt, but this is just the beginning; we conclude and presage future work by showing536

ECOOP 2019

7:22 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

what is, to the best of our knowledge, the first ever IDE integration of the well-known537

FlowDroid security analysis. Figure 26 shows FlowDroid analyzing the data flow starting538

from a parameter of the HTTP request, finding a cross-site scripting vulnerability which539

can be exploited by attackers, and showing a witness trace of it. The expressions in the540

witness are shown precisely, which is possible since the IRConverter of MagpieBridge is541

able to run FlowDroid unchanged on the converted IR and recover precise source mappings.542

As far as we know, this has never been done before with FlowDroid. MagpieBridge then543

renders this precise trace from FlowDroid in the IDE, also the first time this has been done.544

While FlowDroid is one of the best-known security analyses, this is just one example of what545

more can be done with MagpieBridge, and our future work includes handling many more546

analyses.

Figure 26 A sensitive data flow reported by FlowDroid in Visual Studio Code

547

References548

1 Android studio. https://developer.android.com/studio. Accessed: 2019-01-10.549

2 Appscan. https://www.ibm.com/security/application-security/appscan. Accessed:550

2019-01-10.551

3 Atom. https://atom.io/. Accessed: 2019-01-10.552

4 Clang static analyzer. https://clang-analyzer.llvm.org/. Accessed: 2019-01-10.553

5 Codesonar. https://www.grammatech.com/products/codesonar. Accessed: 2019-01-10.554

6 Cppcheck. http://cppcheck.sourceforge.net/. Accessed: 2019-01-10.555

7 Doop. http://doop.program-analysis.org/. Accessed: 2019-01-10.556

8 Eclipse. https://www.eclipse.org/. Accessed: 2019-01-10.557

9 Eclipse lsp4j. https://projects.eclipse.org/proposals/eclipse-lsp4j. Accessed: 2019-558

01-10.559

https://developer.android.com/studio
https://www.ibm.com/security/application-security/appscan
https://atom.io/
https://clang-analyzer.llvm.org/
https://www.grammatech.com/products/codesonar
http://cppcheck.sourceforge.net/
http://doop.program-analysis.org/
https://www.eclipse.org/
https://projects.eclipse.org/proposals/eclipse-lsp4j

L. Luo and J. Dolby and E. Bodden 7:23

10 Emacs. https://www.gnu.org/software/emacs/. Accessed: 2019-01-10.560

11 Facebook infer. https://fbinfer.com/. Accessed: 2019-01-10.561

12 Ibm websphere. https://www.ibm.com/cloud/websphere-application-platform. Accessed:562

2019-01-10.563

13 Intellij. https://www.jetbrains.com/idea/. Accessed: 2019-01-10.564

14 Json-rpc. https://www.jsonrpc.org/. Accessed: 2019-01-10.565

15 Language server protocol. https://microsoft.github.io/language-server-protocol/. Ac-566

cessed: 2019-01-10.567

16 Monaco. https://microsoft.github.io/monaco-editor/index.html. Accessed: 2019-01-10.568

17 Pmd. https://pmd.github.io/. Accessed: 2019-01-10.569

18 Pycharm. https://www.jetbrains.com/pycharm/. Accessed: 2019-01-10.570

19 Safe. https://github.com/sukyoung/safe. Accessed: 2019-01-10.571

20 Sarif specification. https://github.com/oasis-tcs/sarif-spec. Accessed: 2019-01-10.572

21 Soot. https://github.com/Sable/soot. Accessed: 2019-01-10.573

22 Souffle. https://github.com/oracle/souffle/wiki. Accessed: 2019-01-10.574

23 Spotbugs. https://spotbugs.github.io/. Accessed: 2019-01-10.575

24 Spyder. https://www.spyder-ide.org/. Accessed: 2019-01-10.576

25 Static analysis results: A format and a protocol: Sarif and sasp. http://blogs.grammatech.577

com/static-analysis-results-a-format-and-a-protocol-sarif-sasp. Accessed: 2019-578

01-10.579

26 Sublime. https://www.sublimetext.com/. Accessed: 2019-01-10.580

27 Vim. https://www.vim.org/. Accessed: 2019-01-10.581

28 Visual studio code. https://code.visualstudio.com/. Accessed: 2019-01-10.582

29 Wala. https://github.com/wala/WALA. Accessed: 2019-01-10.583

30 Xanitizer. https://www.rigs-it.com/xanitizer/. Accessed: 2019-01-10.584

31 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques585

Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. Flowdroid: precise context,586

flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In ACM587

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14,588

Edinburgh, United Kingdom - June 09 - 11, 2014, pages 259–269, 2014. URL: https://doi.589

org/10.1145/2594291.2594299, doi:10.1145/2594291.2594299.590

32 Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.591

Spllift: statically analyzing software product lines in minutes instead of years. In Proceedings592

of the 34th ACM SIGPLAN conference on Programming language design and implementation593

(PLDI), pages 355–364, 2013. URL: http://www.bodden.de/pubs/bmb+13spllift.pdf.594

33 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis: better595

together. In Proceedings of the Eighteenth International Symposium on Software Testing596

and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, pages 1–12, 2009. URL:597

https://doi.org/10.1145/1572272.1572274, doi:10.1145/1572272.1572274.598

34 Hongyi Chen, Ho-fung Leung, Biao Han, and Jinshu Su. Automatic privacy leakage detection599

for massive android apps via a novel hybrid approach. In IEEE International Conference600

on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages 1–7, 2017. URL:601

https://doi.org/10.1109/ICC.2017.7996335, doi:10.1109/ICC.2017.7996335.602

35 Maria Christakis and Christian Bird. What developers want and need from program analysis:603

an empirical study. pages 332–343, 2016.604

36 Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and605

Emerson Murphy-Hill. Just-in-time static analysis. In Proceedings of the 26th ACM SIGSOFT606

International Symposium on Software Testing and Analysis, ISSTA 2017, pages 307–317,607

New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3092703.3092705,608

doi:10.1145/3092703.3092705.609

ECOOP 2019

https://www.gnu.org/software/emacs/
https://fbinfer.com/
https://www.ibm.com/cloud/websphere-application-platform
https://www.jetbrains.com/idea/
https://www.jsonrpc.org/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/monaco-editor/index.html
https://pmd.github.io/
https://www.jetbrains.com/pycharm/
https://github.com/sukyoung/safe
https://github.com/oasis-tcs/sarif-spec
https://github.com/Sable/soot
https://github.com/oracle/souffle/wiki
https://spotbugs.github.io/
https://www.spyder-ide.org/
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://www.sublimetext.com/
https://www.vim.org/
https://code.visualstudio.com/
https://github.com/wala/WALA
https://www.rigs-it.com/xanitizer/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2594291.2594299
http://www.bodden.de/pubs/bmb+13spllift.pdf
https://doi.org/10.1145/1572272.1572274
http://dx.doi.org/10.1145/1572272.1572274
https://doi.org/10.1109/ICC.2017.7996335
http://dx.doi.org/10.1109/ICC.2017.7996335
http://doi.acm.org/10.1145/3092703.3092705
http://dx.doi.org/10.1145/3092703.3092705

7:24 MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors

37 Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and610

Emerson R. Murphy-Hill. Cheetah: just-in-time taint analysis for android apps. In Proceedings611

of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,612

Argentina, May 20-28, 2017 - Companion Volume, pages 39–42, 2017. URL: https://doi.613

org/10.1109/ICSE-C.2017.20, doi:10.1109/ICSE-C.2017.20.614

38 Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne: Analysis615

for machine learning programs. In Proceedings of the 2Nd ACM SIGPLAN International616

Workshop on Machine Learning and Programming Languages, MAPL 2018, pages 1–10, New617

York, NY, USA, 2018. ACM. URL: http://doi.acm.org/10.1145/3211346.3211349, doi:618

10.1145/3211346.3211349.619

39 Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than the quick620

and dirty way. In Proceedings of the ACM international conference companion on Object621

oriented programming systems languages and applications companion, pages 307–309. ACM,622

2010.623

40 Stephen Fink and Julian Dolby. Wala–the tj watson libraries for analysis, 2012.624

41 Stephen Fink, Julian Dolby, and L Colby. Semi-automatic j2ee transaction configuration. 01625

2019.626

42 Xi Ge and Emerson R. Murphy-Hill. Manual refactoring changes with automated refactoring627

validation. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,628

India - May 31 - June 07, 2014, pages 1095–1105, 2014. URL: https://doi.org/10.1145/629

2568225.2568280, doi:10.1145/2568225.2568280.630

43 Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic security.631

International Journal of Information Security, 14(3):263–287, Jun 2015. URL: https:632

//doi.org/10.1007/s10207-014-0257-6, doi:10.1007/s10207-014-0257-6.633

44 Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and634

Martin C Rinard. Information flow analysis of android applications in droidsafe. In NDSS,635

volume 15, page 110, 2015.636

45 Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and object-sensitive637

information flow control based on program dependence graphs. International Journal of638

Information Security, 8(6):399–422, December 2009. doi:10.1007/s10207-009-0086-1.639

46 David Hovemeyer and William Pugh. Finding more null pointer bugs, but not too many. In640

Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software641

Tools and Engineering, PASTE ’07, pages 9–14, New York, NY, USA, 2007. ACM. URL:642

http://doi.acm.org/10.1145/1251535.1251537, doi:10.1145/1251535.1251537.643

47 Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge. Why644

don’t software developers use static analysis tools to find bugs? pages 672–681, 2013.645

48 Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian646

Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, et al. Cognicrypt: supporting647

developers in using cryptography. In Proceedings of the 32nd IEEE/ACM International648

Conference on Automated Software Engineering, pages 931–936. IEEE Press, 2017.649

49 Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot framework for650

java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop651

(CETUS 2011), volume 15, page 35, 2011.652

50 Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt,653

Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D. McDaniel. Iccta: Detecting654

inter-component privacy leaks in android apps. In 37th IEEE/ACM International Conference655

on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 280–656

291, 2015. URL: https://doi.org/10.1109/ICSE.2015.48, doi:10.1109/ICSE.2015.48.657

51 Alfonso Murolo, Fabian Stutz, Maria Husmann, and Moira C. Norrie. Improved de-658

veloper support for the detection of cross-browser incompatibilities. In Web Engineer-659

ing - 17th International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Pro-660

https://doi.org/10.1109/ICSE-C.2017.20
https://doi.org/10.1109/ICSE-C.2017.20
https://doi.org/10.1109/ICSE-C.2017.20
http://dx.doi.org/10.1109/ICSE-C.2017.20
http://doi.acm.org/10.1145/3211346.3211349
http://dx.doi.org/10.1145/3211346.3211349
http://dx.doi.org/10.1145/3211346.3211349
http://dx.doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/2568225.2568280
https://doi.org/10.1145/2568225.2568280
https://doi.org/10.1145/2568225.2568280
http://dx.doi.org/10.1145/2568225.2568280
https://doi.org/10.1007/s10207-014-0257-6
https://doi.org/10.1007/s10207-014-0257-6
https://doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-009-0086-1
http://doi.acm.org/10.1145/1251535.1251537
http://dx.doi.org/10.1145/1251535.1251537
https://doi.org/10.1109/ICSE.2015.48
http://dx.doi.org/10.1109/ICSE.2015.48

L. Luo and J. Dolby and E. Bodden 7:25

ceedings, pages 264–281, 2017. URL: https://doi.org/10.1007/978-3-319-60131-1_15,661

doi:10.1007/978-3-319-60131-1_15.662

52 Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles Weir, and663

Sascha Fahl. A stitch in time: Supporting android developers in writing secure code. In664

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,665

CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1065–1077, 2017. URL:666

https://doi.org/10.1145/3133956.3133977, doi:10.1145/3133956.3133977.667

53 Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques668

Klein, and Yves Le Traon. Effective inter-component communication mapping in android: An es-669

sential step towards holistic security analysis. In Proceedings of the 22th USENIX Security Sym-670

posium, Washington, DC, USA, August 14-16, 2013, pages 543–558, 2013. URL: https://www.671

usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau.672

54 S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The emperor’s new security indicators.673

In 2007 IEEE Symposium on Security and Privacy (SP ’07), pages 51–65, May 2007. doi:674

10.1109/SP.2007.35.675

55 Johannes Späth, Karim Ali, and Eric Bodden. Context-, flow-, and field-sensitive data-flow676

analysis using synchronized pushdown systems. Proc. ACM Program. Lang., 3(POPL):48:1–677

48:29, January 2019. URL: http://www.bodden.de/pubs/sab19context.pdf, doi:10.1145/678

3290361.679

56 Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and Thomas680

Leich. Featureide: An extensible framework for feature-oriented software development. Science681

of Computer Programming, 79:70–85, 2014.682

57 Emina Torlak and Satish Chandra. Effective interprocedural resource leak detection. In683

Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering -684

Volume 1, ICSE ’10, pages 535–544, New York, NY, USA, 2010. ACM. URL: http://doi.acm.685

org/10.1145/1806799.1806876, doi:10.1145/1806799.1806876.686

58 Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. An-687

dromeda: Accurate and scalable security analysis of web applications. In Fundamental688

Approaches to Software Engineering - 16th International Conference, FASE 2013, Held689

as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS690

2013, Rome, Italy, March 16-24, 2013. Proceedings, pages 210–225, 2013. URL: https:691

//doi.org/10.1007/978-3-642-37057-1_15, doi:10.1007/978-3-642-37057-1_15.692

59 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. Taj:693

Effective taint analysis of web applications. In Proceedings of the 30th ACM SIGPLAN694

Conference on Programming Language Design and Implementation, PLDI ’09, pages 87–97,695

New York, NY, USA, 2009. ACM. URL: http://doi.acm.org/10.1145/1542476.1542486,696

doi:10.1145/1542476.1542486.697

60 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay698

Sundaresan. Soot: A java bytecode optimization framework. In CASCON First Decade High699

Impact Papers, pages 214–224. IBM Corp., 2010.700

61 Christos V. Vrachas. Integration of static analysis results with proguard optimizer for android701

applications. Bachelor Thesis, 2017.702

62 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise and general inter-703

component data flow analysis framework for security vetting of android apps. In Proceedings704

of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,705

AZ, USA, November 3-7, 2014, pages 1329–1341, 2014. URL: http://doi.acm.org/10.1145/706

2660267.2660357, doi:10.1145/2660267.2660357.707

63 Jing Xie, Bill Chu, Heather Richter Lipford, and John T. Melton. ASIDE: IDE support708

for web application security. In Twenty-Seventh Annual Computer Security Applications709

Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011, pages 267–276, 2011. URL:710

https://doi.org/10.1145/2076732.2076770, doi:10.1145/2076732.2076770.711

ECOOP 2019

https://doi.org/10.1007/978-3-319-60131-1_15
http://dx.doi.org/10.1007/978-3-319-60131-1_15
https://doi.org/10.1145/3133956.3133977
http://dx.doi.org/10.1145/3133956.3133977
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
http://dx.doi.org/10.1109/SP.2007.35
http://dx.doi.org/10.1109/SP.2007.35
http://dx.doi.org/10.1109/SP.2007.35
http://www.bodden.de/pubs/sab19context.pdf
http://dx.doi.org/10.1145/3290361
http://dx.doi.org/10.1145/3290361
http://dx.doi.org/10.1145/3290361
http://doi.acm.org/10.1145/1806799.1806876
http://doi.acm.org/10.1145/1806799.1806876
http://doi.acm.org/10.1145/1806799.1806876
http://dx.doi.org/10.1145/1806799.1806876
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://doi.acm.org/10.1145/1542476.1542486
http://dx.doi.org/10.1145/1542476.1542486
http://doi.acm.org/10.1145/2660267.2660357
http://doi.acm.org/10.1145/2660267.2660357
http://doi.acm.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/2076732.2076770
http://dx.doi.org/10.1145/2076732.2076770

	Introduction
	Background and Related Work
	Approach
	The MagpieBridge Workflow
	The MagpieBridge System
	WALA-based Analysis
	Soot-based Analysis
	Doop-based Analysis

	Demonstration
	Diagnostics
	Code Lenses
	Hovers
	Repairs

	Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach
	Comparison Between MagpieBridge-Based CogniCrypt and CogniCrypt Eclipse Plugin
	Comparison to Other Plugin-Based Approaches

	Conclusion and Future Work

