
IDE Support for Cloud-Based Static Analyses
Linghui Luo

Paderborn University
Germany

linghui.luo@upb.de

Martin Schäf
Amazon Web Services

USA
schaef@amazon.com

Daniel Sanchez
Amazon Alexa

USA
danjsan@amazon.com

Eric Bodden
Paderborn University & Fraunhofer IEM

Germany
eric.bodden@upb.de

ABSTRACT

Integrating static analyses into continuous integration (CI) or con-
tinuous delivery (CD) has become the best practice for assuring
code quality and security. Static Application Security Testing (SAST)
tools fit well into CI/CD, because CI/CD allows time for deep static
analyses on large code bases and prevents vulnerabilities in the
early stages of the development lifecycle. In CI/CD, the SAST tools
usually run in the cloud and provide findings via a web interface.
Recent studies show that developers prefer seeing the findings of
these tools directly in their IDEs. Most tools with IDE integration
run lightweight static analyses and can give feedback at coding
time, but SAST tools used in CI/CD take longer to run and usually
are not able to do so. Can developers interact directly with a cloud-
based SAST tool that is typically used in CI/CD through their IDE?
We investigated if such a mechanism can integrate cloud-based
SAST tools better into a developers’ workflow than web-based solu-
tions. We interviewed developers to understand their expectations
from an IDE solution. Guided by these interviews, we implemented
an IDE prototype for an existing cloud-based SAST tool. With a
usability test using this prototype, we found that the IDE solution
promoted more frequent tool interactions. In particular, developers
performed code scans three times more often. This indicates better
integration of the cloud-based SAST tool into developers’ workflow.
Furthermore, while our study did not show statistically significant
improvement on developers’ code-fixing performance, it did show
a promising reduction in time for fixing vulnerable code.

CCS CONCEPTS

• Theory of computation → Program analysis; • Human-

centered computing→ User studies; Usability testing.

KEYWORDS

IDE integration, static analysis, cloud service, SAST tools, security
testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468535

ACM Reference Format:

Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. 2021. IDE
Support for Cloud-Based Static Analyses. In Proceedings of the 29th ACM

Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens,

Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.
3468535

1 INTRODUCTION

Many companies are providing static analysis as a service, e.g.,
Coverity Scan [31], Veracode [37], Checkmarx [7] and LGTM [12].
These tools fit well into CI/CD, since CI/CD allows time for deep
static analyses (e.g., inter-procedural data-flow analysis) of the
complete code base without taking up resources on a user’s machine.
There are many benefits for performing static analysis tasks in the
cloud. From the user’s perspective, it can provide central storage and
tracking of analysis results. Cloud-based SAST tools usually offer
hooks to integrate with popular CI/CD systems, such as GitHub
Actions, Jenkins, or Travis CI and offer a browser-based dashboard
for developers to manage findings. From the supplier’s perspective,
parallelism in the cloud can improve the performance of these tools.
As reported by Microsoft [17], moving static analysis for Windows
drivers to the cloud significantly reduced the analysis time spent for
the svb_bugbash suite with 22.5x speedup. In addition, the cloud
environment provides a central configuration of the analysis. SAST
tool suppliers can tune the analysis engine to keep the false-positive
rate low and update the analysis rule set without shipping constant
updates to customers.

Despite all these benefits of doing static analysis in the cloud,
multiple studies have shown that the ideal reporting location for
static analysis is the developers’ IDE [8, 10]. So, there is a disconnect
between the typical workflow, where SAST tools perform deep
analysis in CI/CD, and developers’ expectation of interacting with
these tools much earlier in the development lifecycle, directly from
the IDE. Some cloud-based SAST tools provide IDE integration to
trigger an analysis manually from the IDE. E.g., Veracode Static for
IDE [38] allows developers to upload binaries to the cloud, start a
scan on demand, and triage the findings from the IDE. Does this
style of IDE integration meet developers’ expectation?

Integrating such a cloud-based SAST tool into the developers’
workflow comes with a set of challenges. In CI/CD, it is accept-
able if an analysis spends several minutes computing in the cloud.
How would such waiting time impact user experience in the IDE?
Another challenge of designing such an IDE integration is dealing

https://doi.org/10.1145/3468264.3468535
https://doi.org/10.1145/3468264.3468535
https://doi.org/10.1145/3468264.3468535

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden

with the desynchronization between the code that is analyzed in
the cloud and the code in developers’ IDE. While the analysis is run-
ning remotely, developers might write more code which makes the
analysis results “out-of-date”. How should such results be displayed
in the IDE? Especially for long-running analysis, are developers
aware of the time to run it?

The main goal of this research is to explore how IDE support for
a purely cloud-based static analysis, that is typically used in CI/CD,
should be designed to meet the expectations of developers. We iden-
tify the key design elements for such IDE support, and investigate
whether it fits better into developers’ workflow in comparison to
a web-based solution. Specifically, does it encourage more usage
of the analysis, improve developers’ performance (i.e., less time to
fix code) and perceived usability? To investigate whether an IDE
solution can improve developers’ workflow, we conducted a user
study (due to COVID-19, all interviews and usability tests were
done remotely). The four stages of the user study were:
(1) User Interviews (section 2): We started by interviewing devel-
opers to understand their expectations of how cloud-based analyses
should be triggered from an IDE, how the findings should be dis-
played there, and what UX features developers would like.
(2) Prototyping (section 3): Guided by the user interviews, we
developed an IDE prototype for the existing tool CodeGuru Re-
viewer [2], using its infrastructure for CI/CD.
(3) Second-round Interviews (section 4): We presented the IDE
prototype to the same developers in (1) to evaluate whether the
design met their expectations. While developers were satisfied with
most features implemented in the prototype, they found existing
mechanisms for CI/CD, e.g., code uploading via Git, were cumber-
some in the IDE.
(4) Usability Testing (section 5): Finally, we assessed our IDE pro-
totype with a larger group of developers. In this test, we applied
both quantitative and qualitative research methods to determine
if the IDE solution was an improvement. We found that using the
IDE prototype developers performed code scans three times more
often than using the web-based solution. Our measurements also
show a promising reduction in time for fixing code. We found that
bringing the findings of the tool into the IDE didn’t necessarily
improve developers’ workflow. Specifically, they expected:
● more education on capabilities and limitations of cloud-based
SAST tools,
● real-time feedback on analysis progress (e.g., progress bars),
● quick validation of each fix, which implies incremental anal-
ysis on code changes,
● seamless analysis of code (e.g., an analysis button without
going through steps such as uploading it),
● more interactive ways to suggest rescan, integrated into
current workflows.

Background. Our study was conducted with developers at Ama-
zon Web Services (AWS). We focused on the cloud-based SAST
tool—CodeGuru Reviewer, which is used as part of the CI/CD
process inside AWS. At AWS, every commit to its code bases is
required to go through a code review process first. Teams can con-
figure different SAST tools, including CodeGuru Reviewer, in
their code review process. CodeGuru Reviewer has an expected
running time of under 10 minutes. Currently, CodeGuru Reviewer

integrated in the code review process only gets triggered to run
(along with other quality assurance tools) when developers submit
code changes to a remote repository via an internal pull request
tool. This internal tool pushes code to a detached branch and de-
velopers have to wait until CodeGuru Reviewer and other quality
assurance tools finish running. The findings of these tools are dis-
played in a web application. Developers have to address the findings
before merging the code changes. Usually, developers address the
findings together with comments from their teammates. However,
developers told us they would like to get findings from CodeGuru
Reviewer before their code reviews, which is not the case in CI/CD,
so our focus of this study is to explore how IDE support could be an
improvement over the current flow and whether an IDE solution is
better than a web solution. CodeGuru Reviewer also provides a
public API and a web interface to trigger a scan of a specific commit
and fetch the findings. We used this API to build an IDE prototype.

2 USER INTERVIEWS

First, we wanted to identify developers’ expectations from IDE
support for cloud-based SAST tools. With user interviews we aimed
to answer the following two research questions:
RQ1: What do developers expect from IDE support for a cloud-
based SAST tool?
RQ2: How could such IDE support fit into developers’ workflow?

Research Methods. We wanted to understand how IDE support
for a cloud-based SAST tool could fit better into developers’ work-
flow in comparison to a web solution. Thus, we interviewed de-
velopers who already used a cloud-based SAST tool in practice.
We conducted semi-structured interviews with developers using
contextual inquiry [26]. Contextual inquiry allows us to understand
how developers work with CodeGuru Reviewer on a day-to-day
basis. Before the interview, we sent each participant a link to one
of their code reviews on which CodeGuru Reviewer detected is-
sues. During the interview, each participant was first asked to talk
through their code review regarding CodeGuru Reviewer’s find-
ings. Participants were asked to demonstrate how they fixed those
issues in their IDEs together with the vulnerable code. Afterwards,
while they had their IDEs opened, they were asked about their ex-
pectations on the IDE support and also to describe the features and
demonstrate them in their IDEs if possible. The detailed questions
list can be found in [20]. To differentiate from common static tools
that run analysis on the same machine as the IDE, we explicitly
told participants that the analysis is running in the cloud and that
a scan takes minutes. Each interview lasted 45 minutes to 1 hour.

Participants. We interviewed 9 participants whowere all software
development engineers from different teams and countries within
AWS. To ensure that participants were already familiar with SAST
tools and willing to use them, we started by finding developers who
were involved with code reviews on which CodeGuru Reviewer
had found issues (n=328) and then invited developers (n=252) who
replied to the CodeGuru Reviewer findings. All the interviewees
had experience using static analysis tools (CodeGuru Reviewer (9),
FindBugs (7), CheckStyle (6), ESLint (1), SonarQube (1), Coverlay
(1), IntelliJ built-in static tools (1)). In the following, we denote the
9 developers with P1-9.

IDE Support for Cloud-Based Static Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Data Collection. All interviews were recorded and transcribed.
They were carried out over video conferencing and all participants
shared their screens during the interview so that their IDE activity
could be captured.

Data Analysis. The responses were analyzed using thematic anal-

ysis. We used both deductive (codes derived from the questions we
prepared for the interviews) and inductive (codes derived from the
responses) coding [11]. The codebook contains 21 codes that were
discussed and agreed upon by two researchers. The list of codes
and their definitions can be found in [19]. The coding itself was first
done by the researcher who conducted the interviews. To ensure
reliability in the coding, a second researcher checked and discussed
all coded data together with the first researcher. Adjustments were
made where disagreement occurred. We applied an inductive ap-
proach to extract emerging themes which could be used to answer
our research questions. We hit saturation [13, 14] after the 7th
participant, whereby no new information was obtained.

2.1 Result of the User Interviews

The analysis produced five themes: Analysis Triggering Mecha-
nism, Result Retrieval Mechanism, Result Display Mechanism, UX
Features, and Workflow Integration. In the following, we will talk
about how the first four themes of the IDE solution could fit into
developers’ workflow (the fifth theme).

2.1.1 Analysis Triggering Mechanism. In this section, we introduce
how developers expect cloud-based SAST tools to be triggered from
their IDEs, how code in their IDEs could be uploaded to the cloud
and other expectations on this topic.

Ways of Triggering: The participants mentioned four ways the
analysis should be triggered from the IDE: manual (n=8/9)1, build
(n=6/9), fully-automated (n=4/9), and semi-automated (n=1/9). The
most mentioned way was manual. 8 participants said the analysis
should be manually triggered by clicking a button in the IDE or by
pressing a key shortcut. Participants would like control over the
timing when their code is analyzed as P7 told us: “I would want to
control it by myself. If I would have a simple button to do the analysis,

in preparation I will do the testing, before sending the code review I

would upload the code to get the review by the machine.”
Most participants (n=6/9) also would like the analysis to be trig-

gered in the project build process. Participants expected it to work
this way, since they used other lightweight static analysis tools like
FindBugs that can be configured as a build target.

Some participants (n=4/9) mentioned that the analysis should
be triggered in a fully-automated way. The developers don’t want
to do anything else to trigger the analysis except writing the code.
Real-time feedback from the analysis was expected. P9 explained us
the reason: “I don’t want to introduce new behavior [...] If there is a

button, during my normal flow, I’m very likely to forget that button.”
P7 mentioned a semi-automated way; he expected that the analysis
can be configured to run when he presses Control + S to save a file.

Code Uploading: Since the analysis is running remotely, we
interviewed the participants to understand how they expected the
code to be uploaded to the cloud. The participants mentioned two
ways: uploading with analysis triggering (n=6/9) and continuous

1We denote the numbers in fractions with the denominator being the sample size.

uploading (n=4/9). Themajority of participants (n=6/9) expected the
code, especially the changes, to be uploaded when the user triggers
the analysis. Their responses indicate that they expected the IDE
support will do it for them. Some participants expected the code
changes or diffs to be continuously uploaded in the background.

Developers have two mental models for how cloud-based static
analyses should be triggered from the IDE—via active triggering
(manual and build) or passive triggering (fully-automated and
semi-automated). Developers with the first mental model would
like to control the timing when they want feedback from the
analysis. They actively search and fix issues once they are done
with their coding task. The others prefer not thinking of the
timing when they want feedback, they expect the IDE solution
to provide feedback right after they make mistakes. Developers
want to interact with the analysis as seamlessly as possible in a
way that matches their individual workflows.

2.1.2 Result Retrieval Mechanism. All participants expected the
IDE support to retrieve analysis results automatically from the
cloud. They did not want to download an analysis report from the
cloud and import it into their IDEs.

Timing: All participants expected the result to be retrieved
to their IDEs directly after the analysis is completed. This can
be in the build phase, if the build triggers the analysis; after the
user manually triggered the analysis; or while coding if real-time
analysis is possible. Three participants mentioned that it would
be sufficient if the result could be retrieved before they published
code reviews. Although we told participants that the analysis is as
time-consuming asCodeGuru Reviewer, their responses indicated
that they were not aware of CodeGuru Reviewer’s capabilities in
terms of performance. They used phrases like “after several seconds”
and “at most 10 seconds”. Some developers told us that they usually
go on working on other tasks after submitting a code review and
get notification emails when the analysis result is ready. They only
check the result (of multiple tools) after their teammates review
their code. This probably explains why some developers don’t have
a sense of the analysis time of a specific tool.

Despite usage of cloud-based SAST tools in the CI/CD pro-
cess, some developers were not aware of the capabilities and
limitations of these tools, e.g., they were unaware how long
CodeGuru Reviewer takes to run.

Project Scope: The participants mentioned four project scopes:
entire project (n=7/9), diffs (n=6/9), selection (n=4/9) and real-time
changes (n=2/9). Scope has a twofold meaning: either they only
want the code in respective project scope to be analyzed or they
only want to see the result in the scope. Seven of them expected
to see the result of the entire project they were working on. Five
of the seven also wanted partial code to be analyzed or to only
see the result in partial code. Partial code can be diffs or selection
(e.g., selected packages, files or methods). We also noticed that the
scope often comes with developer’s primary goal as P9 explained:
“If I just added some code, I am really interested in modifications I

made. [...] If I am working on making the code better, I would want

to see all the issues.” Six participants mentioned that they would
like to see the analysis result in their code changes (diffs) if they

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden

knew previously they passed all the analysis checks. Only two
participants expressed that they would like to see analysis result in
real-time changes, e.g.,“P6: If I write something, the plugin would tell

me immediately: are you sure if you want to do this?”

Which part of the analysis result to be displayed in the IDE
depends on what developers’ primary goals are. If they are
interested in improving overall code quality, showing findings
in the entire project is preferred. If their primary goal is to
implement a feature, they would like to see only findings that
are context-close to the code they are working on (e.g., diffs).

2.1.3 Result DisplayMechanism. When talking about how the anal-
ysis result should look in the IDE, many participants demonstrated
their expectations in their IDEs with compiler errors. All partici-
pants suggested to visually highlight or underline the problematic
code and display a warning message which explains the issue when
the user hovers over the line of code. In addition, all participants
believed the severity of the issue should be included in the warning,
because it helps them to prioritize tasks. Some developers expected
only critical issues to be shown and they must fail or block the build
as P8 told us: “If there is a failure [...] you have to fix it. However,

if there is a warning [...], it is basically ignored. It is useless.” Many
participants (n=4/9) suggested to have a list view of all issues which
allows direct navigation to the line of code when clicking on it. One
of them expected to see issues grouped in packages. Three partici-
pants would have liked to have quick fixes attached to the warnings.
P8 would like to “have code snippet (vulnerable code)” attached to
the warnings such that he “can easily see what the problem was”.

Display of Invalid Result: Since the analysis is running in the
cloud, by the time the analysis result is back to the user’s IDE,
the user might have made more changes to the code. Thus, we
interviewed developers to understand how they expected these
invalid or old results to be handled.

Five of the nine participants expected to see only issues where
the code is still in place, otherwise, “it is misleading” as P1 told us.
Also they did not want to spend time on investigating issues which
might not be there anymore due to code changes. P9 suggested:
“the plugin can see this suggestion was for this particular line or file,

if this line or file changed, the suggestion will not be displayed.”
Also, two participants wanted to be informed about the code

changes and a rescan (rerun the analysis) to be suggested by the
IDE support, as P3 told us: “developers should be informed if they

make changes to the code after they trigger the analysis, they would

have to redo the analysis for the changes. They should be informed

that the changes after triggering the analysis would’t be considered.

If we show out-of-date recommendations in the IDE, the developers

should be informed that these recommendations are for the past and

they might be not valid now.”

Developers expect to be warned in their code just like the way
their IDEs usually show compiler errors. They do not want to
spend time on issues which are out-of-date and expect the IDE
solution to remind them to rescan.

2.1.4 UX Features. The most mentioned feature by participants
was quick fix (n=5/9), as P7 describes how he expected it to work:

“you type Alt+Enter, it will offer you some fixes”. Four participants
would like to suppress warnings, either false positives or issues
which are less severe. P1 expected it to be “a list of previously sup-

pressed warnings to re-enable them or something like checkboxes”.
P3 suggested to import a configuration file containing suppressed
warnings as CheckStyle does. P9 would like to “add a line of com-

ment such as ‘disable CodeGuru Reviewer’ to the code to suppress.”
Participants also expected to customize the rule set of the analy-

sis (n=3/9) and even the warning severities (n=3/9) to decide which
warnings should be displayed. Both warning suppression and cus-
tomization of rule set were mentioned as developers talked about
features that would be beneficial for their teams.

Developers expect the IDE solution to not only pinpoint issues
in their code, but also to fix them. They do not fully trust static
analyses based on previous experience. They expect to suppress
or prioritize warnings based on their own judgment.

3 PROTOTYPING

Based on what we learned from the user interviews and the public
API of CodeGuru Reviewer [28], we developed an IDE prototype
as a Visual Studio Code (VS Code) extension for CodeGuru Re-
viewer. In the following, we introduce this prototype with respect
to the themes derived from the interviews.

Figure 1: Control panel of our IDE prototype

Figure 2: Reminder notifications asking users to rescan

IDE Support for Cloud-Based Static Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Analysis triggering, result retrieval and display. The prototype
provides a control panel for users to interact with CodeGuru Re-
viewer in VS Code as shown in Figure 1. The “Show Recommenda-
tions” button allows users to view the recommendations (findings)
provided by CodeGuru Reviewer directly in the IDE. The proto-
type automatically compares the local code version to the remote
code version and fetches the result to the IDE if a matched anal-
ysis is found. If there are local code changes which haven’t been
uploaded to the remote repository, the prototype displays pop-up
notifications to remind the user for a rescan as shown in Figure 2.
The user can choose to display the result of the most recent analysis
on the current branch with the “No, still show recommendations”
button. Only recommendations in unchanged files will be displayed
in the IDE, since developers told us they would not want to spend
time on issues which might be invalid (see subsubsection 2.1.3). If
the user chooses to push code and rescan, a pop-up window will
ask for a commit message and code changes will be pushed to the
remote repository. After that, the prototype triggers a new analysis
in the cloud. A notification will then be shown to tell the user about
the estimated analysis time (5 to 10 minutes according to the official
documentation) and the result will be automatically retrieved once
the analysis is completed. The “Run Repository Analysis” button
allows the user to run a new analysis on the remote repository. Sim-
ilarly, it also reminds the user to push code if there are uncommitted
code changes.

Figure 3 shows a typical workflow using our IDE prototype:
1. Developer modifies code and pushes changes to a remote Git
repository. 2. Developer clicks the “Run Repository Analysis” but-
ton to request CodeGuru Reviewer to run a new analysis on the
Git repository. 3. CodeGuru Reviewer receives the request and
clones the Git repository. 4. CodeGuru Reviewer analyzes the
cloned repository and generates recommendations. 5. The IDE pro-
totype automatically fetches the recommendations onceCodeGuru
Reviewer finishes the analysis or the developer clicks the “Show
Recommendations” button to fetch the recommendations to the IDE.
At step 4, while CodeGuru Reviewer is running, the developer
can continue working on the code or switch to other tasks.

Recommendations are displayed in a list view at the bottom
of the IDE as shown in Figure 4. They are organized in groups
according to the source files. From the interviews, we learned that

Developer

Code

Git Repository

3. CLONE

1. Push Code Changes

Recommendations
CodeGuru
Reviewer

Cloud

4. ANALYZE

2. R
equest A

nalysis

 5. Fetch Recommendatio
ns

Figure 3: A typical workflow using our IDE prototype

Figure 4: Recommendations are displayed in a list view.

Figure 5: Warning suppression is shown as a code action.

some developers expect issues with fix suggestions to be prioritized.
For recommendations with fix suggestions, we used the red marker
⊗ as an attentional cue that the warning was actionable to help
developers quickly get to the code. It also indicates these issues are
more severe and must be fixed. Although CodeGuru Reviewer
itself does not report the severity of an issue, our consultation with
the engineers of CodeGuru Reviewer revealed that when the tool
provides fix suggestions then it’s typically for more severe issues.
Yellow markers were used for all other findings. These two markers
are the default markers provided by VS Code. We also included
weakness types and code snippets in the recommendations, which
were not provided by CodeGuru Reviewer before. Clicking on a
recommendation in the list navigates to the line of code. The code is
highlighted and underlined as shown in Figure 5. Recommendations
are also displayed in hover messages when the user hovers over the
code. The hovermessage supportsmarkdown, thus, the URLs to best
practices in the recommendations are also clickable. Except quick
fix, we addressed all expectations on result display from developers
as introduced in subsubsection 2.1.3. Although we would have liked
to provide quick fixes, this feature was not supported by CodeGuru
Reviewer at the time and most issues cannot be easily fixed by
adding/removing/replacing a code string.

Other UX features. The prototype was built to support warning
suppression and rule set customization, because thesewere themost
wanted features by developers. Warning suppression is provided as
a code action (automatic refactoring source code) attached to the
recommendation as shown in Figure 5. When the user chooses to
suppress a warning, the line of code will not be marked as an issue
anymore and a special line code comment “SUPPRESS CodeGuru
Reviewer” is automatically added. Users can also manually add
the suppression comment to code. No warning will be shown at
lines with that comment.

Because we could not change CodeGuru Reviewer to allow
its rule set to be customized, we implemented a rule set filter to
allow users to select/unselect the weakness types as shown under
the settings section in Figure 1. Only recommendations with the
selected weakness types would be displayed in the IDE. Developers
also mentioned they would like to limit the display of findings to
specific packages or classes, so the prototype provided a scope filter
to select files or packages they were interested in. VS Code also

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden

has a built-in filter for the warning markers such that users can
filter the recommendations based on the severities in the issue list.
The configuration in the rule set filter and scope filter were locally
stored by the prototype.

4 SECOND-ROUND INTERVIEWS

After implementing the prototype, we re-invited the 9 developers
we interviewed for a second-round interview. Five (P1, P4, P7, P8
and P9) of them accepted our invitations. These second-round inter-
views allowed us to fix minor issues prior to the usability test with
a larger group of developers to ensure the usability feedback was
focused on core issues rather than surface-level design concerns.
The interviews were structured by demonstrating the features of
the prototype addressing the topics from previous interviews. Each
interview was about 30 minutes. After demonstrating a feature, we
reminded the participant what she/he told us in the previous inter-
view and asked how the feature differs from what she/he expected.
We transcribed and coded the interviews to assess user sentiment
(negative and positive) across the themes extracted from the first
round of interviews.

Participants were all very positive about how analysis results
were automatically retrieved and displayed in the IDE. They also
liked the warning suppression and filters feature. Four participants
didn’t expect the code needs to be pushed to the remote repository
to trigger the analysis. P7 explained: “because for me it was like

making dirty commits and I don’t like it.”. P8 gave us his reason: “I
am not using test branch at all, I am only using the mainline.” He
felt it was not helpful if he needs to setup a remote branch for his
changes to run the analysis before sending a code review.

Although participants were critical about pushing code to the
remote Git repository, we could not change the public API of Code-
Guru Reviewer to support other channels. Regarding old findings
in changed files, P8 said he would expect “to see something even I

change the file, unless I change exactly that line.” After we explained
that there might be case that an issue is fixed when new lines are
added to the file, he responded with “I know the system doesn’t know

if it is fixed, but I would like to keep track of what was the issue.”
However, the prototype reminds the user to rescan if there are local
changes and the findings displayed in the IDE will not be removed
unless the user clears them intentionally or requests for an new
scan. Before we started the usability test with a larger group of
developers, we tested the prototype with six developers and fixed
bugs discovered in the interviews and during the test.

While code uploading mechanism via Git push is widely ac-
cepted in CI/CD integration, some developers found it cumber-
some in the IDE due to different working habits, e.g., they only
commit once per feature or do not use the Gitflow [1] workflow.

5 USABILITY TESTING

Study Design. To test if the IDE solution was an improvement
over the web-based solution, we conducted a within-subjects usabil-
ity test with developers. In comparison to between-subjects studies,
it eliminates problems concerning individual differences [6]. We
wanted to compare the condition with the IDE prototype to the

Table 1: Four treatments

Treatment

Session 1 Session 2

System Task System Task

T1 (n=8/32) IDE X Web Y
T2 (n=8/32) IDE Y Web X
C1 (n=8/32) Web X IDE Y
C2 (n=8/32) Web Y IDE X

4

2

0

2

1

1

3

3

2

3

2

1

0

2

1

5

0 2 4 6 8 10

Less than 2 years

2 to 5 years

5 to 10 years

More than 10 years

T1 T2 C1 C2

Figure 6: Years of professional coding experience in Java

web-based solution of CodeGuru Reviewer in AWS Console,
where users can request analyses for their Git repositories and view
recommendations in a web browser. For simplicity, we use IDE to
represent our IDE prototype andWeb to represent AWS Console
in the following. We prepared two tasks, X and Y. In each task,
participants were asked to fix issues in a prepared Java application
either with help of the IDE prototype or AWS Console. All issues
can be detected by the analysis engine of CodeGuru Reviewer.
The prepared applications use AWS services with the AWS SDK for
Java [27] and each of them contains 8 issues with different weak-
ness types. The test applications and issue list can be found in [22].
Although the official documentation of CodeGuru Reviewer gives
5-10 minutes as the average analysis time, for the two applications
used in our study, the analysis time was just 3 minutes for each.

We applied 4 different treatments to participants as listed in
Table 1. T1, T2 are the treatments in which participants first test
IDE, while in C1, C2 participants started with Web. From the study
in [10], we learned that the typical length of a working session with
a SAST tool of developers is 10-30 minutes (see Table 2 in [10]. The
authors refer to SAST tools with “dedicated tools”). Thus, we chose
30 minutes as the session length in our study. In each session, the
participants were given maximally 30 minutes to solve the task.
After each session, participants were asked to fill out an exit-survey
(see the survey in [21]) and take an interview with us to examine
how participants used the tools and how the tools affected their
behaviors.

Participants. We sent 1323 invitation emails to different mailing
lists at AWS. In the email, we asked people to fill out a demographic
survey if they accepted our invitations. We received 49 survey re-
sponses and, based on the responses, we removed participants who
do not write code in Java. We chose 32 of them for our study. The
participants were located in 9 different countries. 75% (n=24/32) of
them never used CodeGuru Reviewer before. Half (n=16/32) of
them write code in VS Code and 78% (n=25/32) had written applica-
tions before with the AWS SDK. Figure 6 shows their professional
coding experience in Java. More than half of them (n=17/32) have
at least 5 years experience. We refer to these 32 participants with
G1-32.

IDE Support for Cloud-Based Static Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Study Setup. The participants were assigned round-robin to one
of the four treatments. In all treatments, participants were asked
to perform the tasks in VS Code. After a brief introduction to the
study, the participants were given the tasks in written form. We
explicitly told the participants that CodeGuru Reviewer is a cloud-
based SAST tool and the expected analysis time to be a few minutes.
We ran CodeGuru Reviewer on the test application before each
session and made sure that participants saw the CodeGuru Re-
viewer’s findings displayed in either VS Code or in AWS Console
before they started doing the task. We also provided participants
user guides of the tested tool, i.e., IDE prototype or AWS Console.
We told participants they could read them if they had questions.
Participants were asked to solve the tasks independently without
any help from us. They were also asked to give us clear signals as
they started and finished the tasks to record the time.

After each session, participants were asked to fill out an exit-
survey containing the 10 System Usability Scale (SUS) questions [5].
In the survey, we also asked participants to evaluate the difficulty of
the task using a Likert scale, select features of the tool they thought
were helpful, estimate the number of issues they fixed, and answer
some open-ended questions.

In each treatment group, we randomly chose 3 participants for
monitoring. We asked these 12 participants to share their screen
with us and think aloud as they were performing the tasks. The
others were not monitored. Because not all participants could take
interviews with us after their sessions due to scheduling constraints,
we only interviewed 24 of them after they completed the exit-
surveys. We asked them about the experience using the tool for the
given task and whether the tool worked as they expected.

5.1 Quantitative Analysis

Developers tend to have different working habits when it comes
to fixing issues in code as we learned from previous interviews.
While some developers tend to validate the fix every time they
address an issue, others fix all issues at a time and check them
at once. We wanted to investigate how different solutions for a
cloud-based SAST tool impact developers’ interaction with the
tool. Our within-subjects design allows us to test the effect on
individual participants. We also wanted to investigate whether our
IDE prototype was sufficient to improve developers’ performance
in code fixing and perceived usability of the tool. With the
quantitative data we collected during the test, we answer the
following questions:
RQ3: Does the IDE prototype encourage developers to interact
more with the cloud-based SAST tool in comparison to the AWS
Console?
RQ4: Do developers fix issues more efficiently with the IDE
prototype in comparison to the AWS Console?
RQ5: Do developers perceive the IDE prototype to be more usable
than the AWS Console?

Behavior (RQ3): Our alternative hypothesis for RQ3 is:

H1: Using the IDE prototype developers will rescan more
frequently than using the AWS Console.

32

18

34

13

33

4

18

1

0 10 20 30 40 50 60 70 80 90 100 110 120

IDE

Web

T1 T2 C1 C2

Figure 7: How often did participants rescan (run analysis)?

The numbers shown in each bar are the total number of res-

cans performed by all participants in the associated treat-

ment group in the condition.

Table 2: Results of two-tailed Wilcoxon signed-rank tests

with 𝛼 = 0.05. 𝑁 is sample size without ties.𝑊𝑐𝑟𝑖𝑡 is the criti-

cal value for 𝑁 and 𝛼 . p-values < 0.05 are marked with *.

(a) Number of Scans

Group N 𝑊 -value 𝑊𝑐𝑟𝑖𝑡 at n (p<0.05) p-value

T1, T2 15 21 25 * 0.0264
C1, C2 12 7 13 * 0.0121
All 27 46 107 * 0.0006

(b) Average Time to Fix an Issue

Group N 𝑊 -value 𝑊𝑐𝑟𝑖𝑡 at n (p<0.05) p-value

T1, T2 14 46 21 0.682
C1, C2 14 50 21 0.873
All 28 194 116 0.841

(c) SUS-Score

Group N 𝑊 -value 𝑊𝑐𝑟𝑖𝑡 at n (p<0.05) p-value

T1, T2 14 27 21 0.110
C1, C2 14 46 21 0.682
All 28 160 116 0.327

To test H1, we logged how many times each participant ran
repository analysis successfully. Participants ran the analysis three
times more often from the IDE (117 in total) than from the AWS
Console (36 in total) as Figure 7 shows. We used the Shapiro-Wilk
test [29] to test whether our data is normally distributed. Since the
data doesn’t distribute normally, we applied a two-tailed Wilcoxon
signed-rank test [40] with 𝛼 = 0.05, which is non-parametric and
used for repeated measures. Although our hypothesis is one-sided,
we used two-tailed testing to ensure the statistical power in both
directions [24]. We present the results in Table 2 with participants
grouped by their treatments.

The statistics in Table 2 (a) suggests that there is a significant
difference (𝑊 <𝑊𝑐𝑟𝑖𝑡 and 𝑝-values are much smaller than 0.05) in
number of scans. Using the IDE prototype developers performed
analysis significantly more often than using the web-based solution,
despite the fact that the analysis engine was the same and the tasks
were similar. This indicates that the IDE solution fits better into
developers’ workflow. Developers wanted validation of their fixes
more often when addressing static findings and the IDE prototype
allowed them to run analysis easier.

Based on survey responses to the question “How did you know

that you fixed the issues?”, participants were more confident about
the number of fixed issues they estimated in the IDE condition.
While 8 participants gave the answer saying that they didn’t know

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden

Table 3: IDE Feature Usage

Feature #Usage Feature #Usage

Show Recommendations 318 Rule Set Filter 9
Run Repository Analysis 84 Warning Suppression 2
Clear Recommendations 20 Scope Filter 0

35

52

42

33

45

40

35

32

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

IDE

Web

T1 T2 C1 C2

Figure 8: How many issues did participants fix?

Web

IDE

T1 T2 C1 C2

Figure 9: Boxplots for average time participants used to fix

an issue. Average values are marked with ×.

in the Web condition, only 3 participants were not sure as they
used the IDE prototype. Later in subsection 5.2 we will introduce
the opinions of developers and how they felt their workflows were
impacted in the two conditions.

The IDE prototype also logged the total number of usage by
all participants for each feature as shown in Table 3. Participants
clicked the “Show Recommendations” button 318 times, which is 3.8
times than they clicked the “Run Repository Analysis” button. The
huge difference between the usage of these two buttons suggested
that participants didn’t choose to rescan but opted for displaying
old findings as they were doing the tasks. While most participants
actively clicked the “Run Repository Analysis" button to rescan (84
times), some participants took suggestions from the IDE prototype
(33 times) and selected “Yes” in the pop-up notification to rescan as
shown in Figure 2. Other features were rarely used. This is likely
due to the short time planned for each session. We asked developers
to select features they thought were useful in the survey, 13 of the
32 participants selected warning suppression, 8 for the rule set filter
and 5 for the scope filter.

Performance (RQ4): Our alternative hypothesis is:

H2: Given an application containing issues that can be de-
tected by CodeGuru Reviewer, developers using the IDE
prototype will be faster than using the AWS Console to fix
an issue.

While 20 participants did not finish the task (timed out) in the
session using the IDE prototype, the numberwith theAWSConsole
is 21. In three of the four groups (T2, C1 and C2), participants fixed
more issues in the IDE than in the Web condition as shown in
Figure 8 (An issue was considered fixed if CodeGuru Reviewer
didn’t report it again.). Surprisingly, participants fixed the same
number of issues (157) in total when using the IDE prototype and
theAWS Console. This is close to the number of issues participants
estimated in the exit-survey, i.e., 165 in the Web and 166 in the IDE
condition.

For each participant, we computed the average time used to
fix an issue. Since one participant didn’t fix any issue with AWS
Console, we excluded this data from the test. Our test failed to
reject the null-hypothesis as the statistics shown in Table 2 (b).
However, as the boxplots in Figure 9 show, there is a promising
time reduction (average and maximum values are lower) in the IDE
condition among most groups of participants (T2, C1 and C2). In
these groups, developers’ performance was also more consistent in
the IDE condition, since the boxes are smaller.

Usability (RQ5): Although we were comparing a research pro-
totype to a commercial tool designed by professional UX designers,
we formulated the alternative hypothesis in an optimistic way.

H3: Developers will rate the IDE prototype with higher SUS-
scores.

We evaluated the survey responses to the 10 SUS questions and
computed the SUS-scores. The higher the score is, the better the
perceived usability. Again, we applied Wilcoxon signed-rank test
to the SUS-scores and the result is shown in Table 2 (c). There is
no statistically significant difference between the two conditions
regarding the SUS-scores.

However, we found out that participants tended to rate the tool
they tested later with higher SUS-scores as the boxplots in Figure 10
show. We observed that many participants who started testing the
IDE prototype at first (i.e., T1 and T2) were actually not expecting
the analysis to be time-consuming. These participants were more
confused as the IDE prototype did not display results immediately
as they tried to run the analysis. Note that 75% (n=24/32) of the
participants never used CodeGuru Reviewer before. In contrast,
participants who tested theWeb condition first had a better sense

Web

IDE

IDE - Web (T1+T2) Web - IDE (C1+C2)

Figure 10: Boxplots for SUS-Scores

IDE Support for Cloud-Based Static Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

of the asynchronous nature and the analysis time as they tested the
IDE prototype later. We will discuss this further with the qualitative
data in subsection 5.2.

Although we pseudo-randomly sampled participants into groups
to control for key factors, like experience with pre-existing tools,
we had a few issues specifically affecting group T1. The data were
affected by four participants in T1who fixed more issues in theWeb
condition (less time per fix as shown in Figure 9) and rated extremely
low SUS scores in the IDE condition. Participant G34 had more than
10 years of development experience and was very familiar with
SAST tools used in CI (including CodeGuru Reviewer), so he was
extremely fast in the Web condition (only used half of the time as
in the IDE) and fixed more issues. In the interviews, participants
G20 and G21 mentioned that they did not understand there was
no local analysis and got confused in the IDE condition, while in
the Web condition it was straightforward for them and they could
better focus on the task. G2 was observed spending time exploring
the features of the IDE prototype rather than fixing issues. He gave
a much lower SUS score for IDE than forWeb.

Developers’ perceived usability of the IDE prototype was im-
pacted by both their pre-existing expectations (on IDE inte-
gration of lightweight static analyses) and familiarity with the
cloud-based SAST tool.

5.2 Qualitative Analysis

We coded the after-session interviews and survey responses to “Tell
us what needs to be improved". We reused the codes from previous
interviews introduced in section 2 and section 4 and also added 12
new codes (see codes in [19]). We answer the following questions:
RQ6: How does the IDE prototype differ from the expectations of
developers?
RQ7: How did developers think the IDE prototype impacted their
workflows?

5.2.1 RQ6: How does the IDE prototype differ from the expectations
of developers? The positive things developers mentioned about the
IDE prototype were similar to those we heard from previous in-
terviews introduced in section 4. Moreover, developers were very
satisfied with the quality of the analysis result. They felt the rec-
ommendations were precise and informative. This is probably the
reason why warning suppression was rarely used in the test. In
the following, we focus on the major issues of the IDE prototype
pinpointed by developers. We also identified some issues in the
AWS Console and reported them to the engineering team.

Analysis Triggering Mechanism: The biggest issue men-
tioned by participants (n=10/32) was uploading code via Git. Some
participants felt uncomfortable to push code without a code review.
Others felt less confident to push code without testing it locally.
Although the test applications provide unit tests, these participants
didn’t run them at first, instead, they expected to get feedback
before testing.

Many participants (n=8/32) were expecting fast local validation
of fixes when they clicked on “Run Repository Analysis” button, as
G8 said “when I modified the code, it was strange to see the squiggly

lines here and there saying there was an error.” Although there were

pop-up notifications shown in the IDE mentioning the analysis
time and suggesting rescan, some participants seemed to pay little
attention to those pop-ups. These participants are mostly from the
groups who tested the IDE prototype at first.

Developers expected IDE support to allow usage of cloud-based
SAST tools before their code goes into the next phases (test,
CI/CD) in the development lifecycle. They wanted the analysis
of code without going through steps such as uploading it.

Result Retrieval and Display Mechanisms: Most problems
came from the analysis time and poor indication of the analysis
progress in the IDE. CodeGuru Reviewer needs about 3 minutes
for reanalyzing each test application, which is shorter than the
official average analysis time (5-10 minutes) given by CodeGuru
Reviewer. Still, it was “painfully slow to the point I was worried

the plugin was unresponsive” as G15 told us. As mentioned above,
pop-ups were not sufficient for informing participants about the
analysis time. As G8 told us, although he read the pop-ups he
thought it was a “generic message” and “didn’t consider it would be
the exact time”. More than one third of the participants (n=13/32) we
interviewed expected to see a progress bar or a dynamic display of
analysis status in the IDE. They wanted to “see what it (the service)
is currently doing, so not just all of a sudden, a pop-up comes up

saying the result is ready.” This is also the pain point in the AWS
Console, since there is no progress indication either.

Using the IDE prototype, many participants told us they kept
working after started a new scan. Most confusion came from dis-
playing old findings. Some participants didn’t rescan, but chose
to see them in the IDE and clicked the “Show Recommendations”
button multiple times as they were fixing the issues. They thought
this button performed local validation of a fix, although this but-
ton actually checks code version and only displays the findings in
unchanged files. This led to “the problem (finding) disappeared and

I had trouble to get them again.” as G12 described. This can proba-
bly be resolved by reading the user manual or a mechanism that
checks local changes better. Other participants felt “the outdated
messages are annoying, I’d rather have them disappear when a line

gets updated, to invalidate them.”, since they were expecting the
prototype to be as reactive as lightweight static analysis tools.

Pop-ups were less effective in educating developers on mecha-
nisms built in the IDE solution. If the analysis is not returning
results instantaneously or developers’ activities in the IDE are
not blocked, the display of old findings and unpredictable wait-
ing time for new findings are “deal breakers”. This suggests
developers need clear visual cues (e.g., progress bars) to under-
stand when the analysis is running and if findings are outdated.

UX Features: Five participants mentioned that they were not
aware that the analysis was running remotely, thus, they were ex-
pecting real-time feedback due to previous experience. As G20 told
us that he didn’t think about the analysis was running in the cloud.
His “initial perception is that this is going to be some sort of static

analysis tool" and he was “expecting it to be a similar experience to

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden

other static analysis tools" he has used. These participants suggested
more obvious visual indication for the asynchronous nature of the
IDE solution.

Another feature that was missed by participants for both the IDE
prototype and AWS Console is a way to keep track of addressed
issues. G9 told us he was using the rating buttons (thumb up and
down symbol) in the AWS Console “as almost a checklist. I know

which I have done because I marked them helpful.” Although quick
fix was the most mentioned feature in our first user interviews
introduced in section 2, only 3 participants mentioned it this time.
Developers understood that it was harder to provide quick fixes
for more complex issues detected by a SAST tool than a linter.
Two participants suggested that the IDE prototype should forbid or
auto-cancel multiple scans on the same commit, since “it’s a wasted
action”.

Even though most developers were aware that the cloud-based
SAST tool performs a deeper analysis and acknowledged that
the analysis takes longer, they still complained about the waiting
time and that findings and code ran out of sync. This suggests
that using the same visual components for the cloud-based
analysis that are also used by lightweight local static analyzers
(e.g., problem-list windows, error markers on code) may create
unrealistic expectations about the behavior of the tool.

5.2.2 RQ7: How did developers think the IDE prototype impacted
their workflows? As we show for RQ3 the IDE prototype impacts
developers’ behavior in fixing code, the qualitative data also in-
dicates the same. Although developers interacted with the same
analysis engine, they approached the tasks differently in the two
conditions. A participant used a metaphor to express the different
feelings: “The thing in the AWS Console felt like integration test.

Having it in the IDE was like unit test.”
In the AWS Console, because it is in a browser, participants

felt a disconnect “between running the analysis and editing”. A few
participants perceived the list of findings as a task list as G9 told us:
“I saw the task list and I went to work on that code. It just didn’t click

for me that I can go back to the AWS Console and rerun the analysis.”
They felt that they were supposed to pick a workflow in which they
would only rescan once they addressed all issues. Not seeing the
result immediately was less frustrating, because it was clear that
there was no synchronization. While some participants chose to
address all issues at once, others felt their workflows were paused
in the Web condition as G29 told us: “I was somehow encouraged to

wait to see what happens. I felt that if go back working, I would not

be aware when the execution finishes.”
Using the IDE prototype, without switching between the browser

and the IDE, some developers rescanned more often. A participant
who addressed all issues at once in the Web condition said: “(in the

IDE) It was like I saw the thing turned red, I fixed it, kept iterating

on it until error-free, then I move on to the next one. [...] So I was

expecting some feedback. I changed something, hit on ‘Run Repository

Analysis’[...]” Another participant told us he felt encouraged to
change code and rescan even before the previous scan is completed
such that he could work more efficiently.

Using the IDE prototype, developers wanted to validate their
fixes more often and felt encouraged not to wait for the analysis
execution, but continue working on fixing other issues.

Despite of all the problems identified in the IDE prototype, many
participants expressed that they would prefer the IDE support to
interact with cloud-based SAST tools. G21 told us he “would prefer
IDE, because less time wasted having to go through other screens. I can

push code, and let analysis run on branch, while continuing workflow

in the IDE. Less context switching.” G1 also preferred the prototype
but wished it was more interactive:“It runs analysis on the file you

are working on and tells you if you fixed it correctly or not.” Also
G22 thought that “the IDE integration is the better path, because

it’s closer to the activity being performed: writing code.” Despite the
delay of the analysis, he would “much rather see a list of suggested

problems/fixes in my editor than changing screens back-and-forth.”

6 THREATS TO VALIDITY

External Validity: We conducted our study with developers of a
single company. Among them, only a few participants were female.
This may lead to limited generalizability of our findings to the whole
developer community. However, the participants were located in
9 different countries, have years of professional experience, and
work on different kinds of products. Furthermore, we only studied
the effect of IDE integration for one cloud-based SAST tool and one
IDE. As we demonstrated, the response time of the SAST tool is a
major factor, so our findings cannot be generalized to tools that are
significantly faster or slower. A follow-up study can determine this
effect by artificially introducing delays when retrieving findings.
Our prototype is based on language server protocol [18, 23] that
integrates with most modern IDEs, so we expect the impact of the
IDE choice to be minimal, but developers’ familiarity with an IDE
could affect the study.

We only compared the IDE solution to the web-based solution
of CodeGuru Reviewer regarding repository analysis. We did not
consider the impact on development lifecycle management with
the issue board in the web-based solution. It is likely that project
managers and team leaders would have a higher preference for the
web-based solution. Moreover, we did not consider cost, security,
and trust. Some participants were critical about pushing code for a
rescan and proposed to hide the action, however, real customers of
CodeGuru Reviewer might not want their code to be uploaded
silently due to security concerns.

Internal Validity: The first threat is the session time. Some partic-
ipants told us they felt stressed and they did not have enough time
to fix all issues. While the available time limited the performance
of some participants, it also simulated the pressure of software de-
velopment on tight deadlines, e.g. before releases. We also observed
that some participants were less motivated to fix code, but more
interested in playing with the features of the tools.

Another threat was attrition. We had four developers (who did
the first interviews with us) not attend the second-round interviews
and two (their data are not included in the paper) did not participate
in the usability test. We are aware that our findings are likely to be
based on a biased sample of developers who have higher motivation

IDE Support for Cloud-Based Static Analyses ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

to use static analysis tools or cloud services. Moreover, the tasks
in the usability test were artificial. Due to unfamiliarity with the
projects or the used Java libraries, some participants may have
performed worse than in real development situations. However, we
only selected developers who have professional experience in Java
and the majority (n=25/32) of them used AWS SDK before.

Regarding the impact of developers’ familiarity with the IDE, we
applied Wilcoxon-singed rank test to the sample grouped by tasks
and grouped by the experience with VS Code, the result indicated
there was no significant difference between the groups. Regarding
the issues detected by CodeGuru Reviewer, they were all true
positives.

Lastly, the IDE prototypewas not designed by professional UX de-
signers, but researchers. It is likely that developers would perceive
a significant improvement of the usability using a professionally
designed IDE solution in comparison to the web-based solution.
Although we were comparing a prototype to a web application with
real customers, our result indicates that the prototype is not worse.

7 RELATEDWORK

The usability of static analysis tools has been studied by many
researchers. Johnson et al. interviewed experienced developers to
understand why developers were not widely using static analysis
tools [16]. They found out that false positives and bad warnings
were the major reasons for developers’ dissatisfaction. Christakis
and Bird surveyed developers at Microsoft to understand what de-
velopers want and need from static analysis tools [8]. Their study
shows that developers would like static analysis tools to detect
more critical issues for them such as security or concurrency issues
and display the findings directly in their IDEs. Beller et al. studied
the usage of static analysis tools on open source projects [3]. They
found out that most open source developers only use static tools
sporadically and they need to be made aware of the benefits of
using these tools. Vassallo et al. studied developers’ behavior using
static analysis tools over different development stages [36]. They
found out that severity is the most important factor for developers
in prioritizing issues to fix, which was confirmed in our study. Steidl
et al. suggested to prioritize issues that are easy to refactor [30].
Their study indicates prioritizing by low refactoring costs matches
greatly the developers’ opinions. In our study, we also heard expec-
tation of such prioritization mechanism from some developers. A
more recent study from Nguyen Quang Do et al. took a user-centric
approach to understand why developers use static analysis tools
and which decision they make when using these tools [10]. Accord-
ing to their study with developers at Software AG, IDEs are still
the ideal reporting locations wanted by developers. However, we
observed that there exists a disconnect between the typical usage of
cloud-based SAST tools in CI/CD and developers’ wish to interact
with them earlier in the lifecycle, in their IDEs. Our work focuses
on exploring how IDE support for cloud-based SAST tools that are
typically used in CI/CD should be designed. We approached the ex-
ploration from developers’ perspective with a user study. We found
out that developers expected more than just seeing the findings of
these tools in their IDEs.

In recent years, we see an increased interest in studies that apply
static analysis tools at scale [4, 15, 17, 35, 41]. Facebook’s static

analyzer infer has detected over 100,000 issues that have been
resolved by Facebook’s developers since 2014 [9]. As reported by
Google [25], their static analysis platform Tricorder could analyze
50,000 code review changes per day. More than 5,000 issues per
day were tagged to be fixed by developers. These studies discuss
tools that are integrated in the code review process. Our work
builds on the results of these papers and asks the question how
we can give developers access to cloud-based SAST tools directly
through their IDEs, and if this improves developers’ workflows. We
share challenges and lessons learned in the exploration that can be
beneficial for suppliers that wish to build such IDE support.

Many researchers have studied the impact of cloud services on
the user experience [33, 39]. Kaisa Väänänen-Vainio-Mattila et al.
studied the user perceptions of Wow—a positive user experience
when using cloud services [34]. They proposed a few design im-
plications for achieving Wow such as pushing dynamic features
to keep the user stimulated. Tang et al. interviewed users of file
synchronizing and sharing services to understand the cloud-based
user experience [32]. They found out that users’ understanding and
usage of cloud functionalities are limited by their existing practices.
Similarly, we also learned that developers’ expectations of IDE sup-
port for cloud-based SAST tools were affected by their awareness
of the limitations of these tools, and their previous experience with
lightweight analysis tools. Developers’ overexpectations hugely
impacted the perceived usability when interacting with our IDE
prototype. Through a usability test, we identified important design
elements and mechanisms required for a better tool support.

8 CONCLUSION

To investigate how IDE support for cloud-based SAST tools should
be designed, we conducted a multiple-staged user study. We first
interviewed developers at AWS to understand their expectations.
Developers’ feedback indicates that they expected the IDE support
for cloud-based analyses to behave similar to the lightweight static
analysis tools they already use in their daily work. Their responses
also indicate that they have limited understanding of the capabili-
ties and limitations of SAST tools. Guided by the user interviews,
we developed an IDE prototype that was positively confirmed by
the same group of developers. We tested this IDE prototype on 32
developers. This usability test showed that allowing developers to
interact with a cloud-based SAST tool through their IDE signifi-
cantly increased their interaction with the tool, i.e., they ran the
analysis much more frequently than using the web-based solution.
This might impact the code quality in a long time span. Moreover,
we found promising reduction in fix time even in our small-size
study. A larger longitudinal study on this impact should be con-
ducted in the future. However, we also found out that reusing the
same visual components for the cloud-based analysis that are also
used by lightweight static analyzers (e.g., problem-list windows,
error markers on code) created confusion and that developers need
clear visual cues to understand the asynchronous nature of cloud-
based analyses.

ACKNOWLEDGMENTS

This researchwas partially supported by the research training group
Human Centered Systems Security (NERD.NRW) sponsored by the
state of North Rhine-Westphalia in Germany.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden

REFERENCES

[1] Atlassian. 2021. Gitflow Workflow. https://www.atlassian.com/git/tutorials/
comparing-workflows/gitflow-workflow

[2] AWS. 2019. CodeGuru Reviewer. https://aws.amazon.com/codeguru
[3] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.

Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume

1. IEEE Computer Society, 470–481. https://doi.org/10.1109/SANER.2016.105
[4] Claude Bolduc. 2016. Lessons learned: Using a static analysis tool within a

continuous integration system. In 2016 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW). IEEE, 37–40. https://doi.org/10.
1109/ISSREW.2016.48

[5] John Brooke. 1996. SUS: A ’Quick and Dirty’ Usability Scale. Usability Evaluation
In Industry 189 (1996). https://doi.org/10.1201/9781498710411-35

[6] Gary Charness, Uri Gneezy, and Michael A Kuhn. 2012. Experimental methods:
Between-subject and within-subject design. Journal of Economic Behavior &

Organization 81, 1 (2012), 1–8. https://doi.org/10.1016/j.jebo.2011.08.009
[7] Checkmarx. 2021. Checkmarx. https://www.checkmarx.com
[8] Maria Christakis and Christian Bird. 2016. What Developers Want and Need

from Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA,
332–343. https://doi.org/10.1145/2970276.2970347

[9] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),
62–70. https://doi.org/10.1145/3338112

[10] Lisa Nguyen Quang Do, James Wright, and Karim Ali. 2020. Why do software
developers use static analysis tools? a user-centered study of developer needs
and motivations. IEEE Transactions on Software Engineering (2020). https:
//doi.org/10.1109/TSE.2020.3004525

[11] Jennifer Fereday and Eimear Muir-Cochrane. 2006. Demonstrating Rigor
Using Thematic Analysis: A Hybrid Approach of Inductive and Deduc-
tive Coding and Theme Development. International Journal of Qualita-

tive Methods 5, 1 (2006), 80–92. https://doi.org/10.1177/160940690600500107
arXiv:https://doi.org/10.1177/160940690600500107

[12] GitHub. 2021. LGTM. https://lgtm.com
[13] Barney G Glaser, Anselm L Strauss, and Elizabeth Strutzel. 1968. The discovery

of grounded theory; strategies for qualitative research. Nursing research 17, 4
(1968), 364. https://doi.org/10.1177/003803856900300233

[14] Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How many interviews are
enough? An experiment with data saturation and variability. Field methods 18, 1
(2006), 59–82. https://doi.org/10.1177/1525822X05279903

[15] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. 2019. How do developers
act on static analysis alerts? an empirical study of coverity usage. In 2019 IEEE

30th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
323–333. https://doi.org/10.1109/ISSRE.2019.00040

[16] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. 2013. Why don’t software developers use static analysis tools to find bugs?.
In 35th International Conference on Software Engineering, ICSE ’13, San Francisco,

CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.).
IEEE Computer Society, 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[17] Rahul Kumar, Chetan Bansal, and Jakob Lichtenberg. 2016. Static Analysis Using
the Cloud. Electronic Proceedings in Theoretical Computer Science 228 (Oct 2016),
2–15. https://doi.org/10.4204/eptcs.228.2

[18] Linghui Luo, Julian Dolby, and Eric Bodden. 2019. MagpieBridge: A General
Approach to Integrating Static Analyses into IDEs and Editors (Tool Insights
Paper). In 33rd European Conference on Object-Oriented Programming, ECOOP 2019,

July 15-19, 2019, London, United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson
(Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 21:1–21:25. https:
//doi.org/10.4230/LIPIcs.ECOOP.2019.21

[19] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. 2021. List of codes
and their definitions. https://github.com/linghuiluo/FSE21Study/blob/main/
ListOfCodes.pdf

[20] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. 2021. List of
questions asked in user interviews. https://github.com/linghuiluo/FSE21Study/
blob/main/ListOfInterviewQuestions.pdf

[21] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. 2021. Ques-
tions in the survey. https://github.com/linghuiluo/FSE21Study/blob/main/
SurveyQuestions.pdf

[22] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. 2021. Test applica-
tions and issue list. https://github.com/linghuiluo/FSE21Study/tree/main/tasks

[23] Microsoft. 2021. Language Server Protocol. https://microsoft.github.io/language-
server-protocol

[24] Graeme D Ruxton and Markus Neuhäuser. 2010. When should we use one-
tailed hypothesis testing? Methods in Ecology and Evolution 1, 2 (2010), 114–117.
https://doi.org/10.1111/j.2041-210x.2010.00014.x

[25] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.

ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720
[26] Douglas Schuler and Aki Namioka. 1993. Participatory design: Principles and

practices. CRC Press. https://dl.acm.org/doi/book/10.5555/563076
[27] Amazon Web Services. 2021. AWS SDK for Java. https://aws.amazon.com/sdk-

for-java
[28] Amazon Web Services. 2021. Public API of CodeGuru Reviewer.

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/
services/codegurureviewer/package-summary.html

[29] S. S. SHAPIRO and M. B. WILK. 1965. An analysis of variance test for normality
(complete samples). Biometrika 52, 3-4 (dec 1965), 591–611. https://doi.org/10.
1093/biomet/52.3-4.591

[30] Daniela Steidl and Sebastian Eder. 2014. Prioritizing maintainability defects based
on refactoring recommendations. In 22nd International Conference on Program

Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014, Chanchal K. Roy,
Andrew Begel, and Leon Moonen (Eds.). ACM, 168–176. https://doi.org/10.1145/
2597008.2597805

[31] Synopsys. 2021. Coverity Scan. https://scan.coverity.com
[32] John C. Tang, Jed R. Brubaker, and Catherine C. Marshall. 2013. What Do You

See in the Cloud? Understanding the Cloud-Based User Experience through
Practices. In Human-Computer Interaction - INTERACT 2013 - 14th IFIP TC 13

International Conference, Cape Town, South Africa, September 2-6, 2013, Proceedings,

Part II (Lecture Notes in Computer Science, Vol. 8118), Paula Kotzé, Gary Marsden,
Gitte Lindgaard, Janet Wesson, and Marco Winckler (Eds.). Springer, 678–695.
https://doi.org/10.1007/978-3-642-40480-1_47

[33] Ilkka Uusitalo, Kaarina Karppinen, Arto Juhola, and Reijo Savola. 2010. Trust and
cloud services-an interview study. In 2010 IEEE Second International Conference

on Cloud Computing Technology and Science. IEEE, 712–720. https://doi.org/10.
1109/CloudCom.2010.41

[34] Kaisa Väänänen-Vainio-Mattila, Jarmo Palviainen, Santtu Pakarinen, Else Lager-
stam, and Eeva Kangas. 2011. User perceptions of Wow experiences and design
implications for Cloud services. In Designing Pleasurable Products and Interfaces,

DPPI ’11, Milano, Italy, June 22-25, 2011, Alessandro Deserti, Francesco Zurlo, and
Francesca Rizzo (Eds.). ACM, 63:1–63:8. https://doi.org/10.1145/2347504.2347573

[35] Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald C Gall. 2018.
Continuous code quality: are we (really) doing that?. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. 790–795.
https://doi.org/10.1145/3238147.3240729

[36] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and H. C. Gall.
2018. Context is king: The developer perspective on the usage of static analysis
tools. In 2018 IEEE 25th International Conference on Software Analysis, Evolution

and Reengineering (SANER). 38–49. https://doi.org/10.1109/SANER.2018.8330195
[37] Veracode. 2021. Veracode. https://www.veracode.com/products/binary-static-

analysis-sast
[38] Veracode. 2021. Veracode Static For IDE. https://help.veracode.com/r/api_eclipse
[39] Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David Kramer,

and Wolfgang Karl. 2008. Scientific Cloud Computing: Early Definition and
Experience. In 10th IEEE International Conference on High Performance Computing

and Communications, HPCC 2008, 25-27 Sept. 2008, Dalian, China. IEEE Computer
Society, 825–830. https://doi.org/10.1109/HPCC.2008.38

[40] R. F. Woolson. 2008. Wilcoxon Signed-Rank Test. American Can-
cer Society, 1–3. https://doi.org/10.1002/9780471462422.eoct979
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780471462422.eoct979

[41] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analy-
sis tools in continuous integration pipelines. In 2017 IEEE/ACM 14th Interna-

tional Conference on Mining Software Repositories (MSR). IEEE, 334–344. https:
//doi.org/10.1109/MSR.2017.2

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://aws.amazon.com/codeguru
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/ISSREW.2016.48
https://doi.org/10.1109/ISSREW.2016.48
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1016/j.jebo.2011.08.009
https://www.checkmarx.com
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3338112
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1177/160940690600500107
https://arxiv.org/abs/https://doi.org/10.1177/160940690600500107
https://lgtm.com
https://doi.org/10.1177/003803856900300233
https://doi.org/10.1177/1525822X05279903
https://doi.org/10.1109/ISSRE.2019.00040
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.4204/eptcs.228.2
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://github.com/linghuiluo/FSE21Study/blob/main/ListOfCodes.pdf
https://github.com/linghuiluo/FSE21Study/blob/main/ListOfCodes.pdf
https://github.com/linghuiluo/FSE21Study/blob/main/ListOfInterviewQuestions.pdf
https://github.com/linghuiluo/FSE21Study/blob/main/ListOfInterviewQuestions.pdf
https://github.com/linghuiluo/FSE21Study/blob/main/SurveyQuestions.pdf
https://github.com/linghuiluo/FSE21Study/blob/main/SurveyQuestions.pdf
https://github.com/linghuiluo/FSE21Study/tree/main/tasks
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://doi.org/10.1111/j.2041-210x.2010.00014.x
https://doi.org/10.1145/3188720
https://dl.acm.org/doi/book/10.5555/563076
https://aws.amazon.com/sdk-for-java
https://aws.amazon.com/sdk-for-java
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/codegurureviewer/package-summary.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/codegurureviewer/package-summary.html
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1145/2597008.2597805
https://doi.org/10.1145/2597008.2597805
https://scan.coverity.com
https://doi.org/10.1007/978-3-642-40480-1_47
https://doi.org/10.1109/CloudCom.2010.41
https://doi.org/10.1109/CloudCom.2010.41
https://doi.org/10.1145/2347504.2347573
https://doi.org/10.1145/3238147.3240729
https://doi.org/10.1109/SANER.2018.8330195
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://help.veracode.com/r/api_eclipse
https://doi.org/10.1109/HPCC.2008.38
https://doi.org/10.1002/9780471462422.eoct979
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780471462422.eoct979
https://doi.org/10.1109/MSR.2017.2
https://doi.org/10.1109/MSR.2017.2

	Abstract
	1 Introduction
	2 User Interviews
	2.1 Result of the User Interviews

	3 Prototyping
	4 Second-round Interviews
	5 Usability Testing
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis

	6 Threats To Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

