
Model Generation For Java Frameworks
Linghui Luo ∗¶, Goran Piskachev∗¶, Ranjith Krishnamurthy†, Julian Dolby‡, Eric Bodden†§, Martin Schäf∗
∗Amazon Web Services, †Fraunhofer IEM, ‡IBM Research, §Paderborn University, ¶The work was done prior to Amazon.

Abstract—Modern applications often rely on rich frameworks
to provide functionality. Android, for instance, handles many
aspects of building a mobile app. But these frameworks also
have costs. Given the importance of application security and
tools to ensure it, one major cost is that framework complicate
tools based on static analysis: (1) They hurt analysis quality by
including large amounts of complex, dynamic, and native library
code. (2) Frameworks like Android become the main program,
making whole program analysis of the app problematic.

Mechanisms such as Averroes have been developed to handle
unknown library code for Java, and have proven effective for
some analyses. However, they have two main limitations in
the context of our complications: (1) They do not provide the
precision required for security analysis. (2) They assume a main
program, which is not the case for frameworks. To address this,
we present GENCG, which extends Averroes to support taint
analysis for Android and Spring. Evaluation with real-world
Android applications shows that call graphs using the models
generated by GENCG cover significantly more code of the app,
improves recall of a client security analysis, and, at the same
time, does not introduce more false positives.

Index Terms—static analysis, call graph, framework modeling

I. INTRODUCTION

Static program analysis is used in a wide variety of ap-
plications, such as optimization [1], [2] and security analysis
tools [3], [4]. Many techniques exist, and many of them rely
on a call graph, i.e., a graph of which function is called at
each call site. Call graphs are often built using a fixed-point
algorithm: start with code known to be called, e.g., the main
method in Java, and add code that it calls. This continues until
no more code is added. Once a call graph has been obtained,
many analyses are built on top of it.

Framework applications complicate such analysis in at least
two ways: by comprising relevant code that is intractable for
analysis, and by muddying the notion of what the program
actually is. Many modern frameworks use dynamic features,
e.g., constructing a string and then using it as a class name
in Java. Unless the analysis is able to precisely interpret the
operations that construct the string, it will not be able to
understand what class is being used and hence will not be able
to determine the relevant code. Furthermore, many frameworks
use code in multiple languages, e.g., JNI calls to C code from
Java. Most analysis frameworks only handle one language.
And, for the code can be determined, there is often just too
much to be analyzed in a scalable fashion. Thus, most static
analysis tools model frameworks rather than analyze.

Modern frameworks also complicate the notion of a pro-
gram: many modern programs are, in effect, clients of a
framework, e.g., think of a servlet that is installed into Tomcat

Web server. These programs have entry points that expect to
be called from the framework, and finding these entry points
depends on the framework. Sometimes, as with Spring [5], the
framework expects user code to be annotated in specific ways
that will cause the framework to call it. Sometimes, there are
specific interfaces that must be implemented by user code to
signal that specific code should be called from the framework.
Often the user code makes a call into the framework, and
then the framework calls back into the user code in a similar
way. Thus the program becomes a collection of pieces knitted
together by the framework. A prominent example of such a
framework is Android [6].

A common approach to handling this kind of framework
is to build a custom model that attempts expose the relevant
semantics of the framework with respect to the program. For
Android, for example, such a model will add entry points to
all methods that implement appropriate interfaces. But this is
never-ending, since there are many frameworks and because
each framework itself keeps changing. As a result, the model
has a constant struggle to model the semantics, and thus
the analysis can easily miss many real issues. Mechanisms
such as Averroes [7] have been developed to tackle this
situation in dealing with Java libraries by avoiding much
manual modeling of the library code. Averroes analyzes the
original library to create a very coarse model that attempts
to over approximate library behavior. Potentially this results
in a conservative analysis. There are compromises needed
to not look at the framework, and, while effective for some
analyses, such mechanisms have not been designed to support
the precision required for security analysis, especially the need
for flow-sensitivity and field-sensitivity. While frameworks
usually provide rich library functionalities, they are different
than libraries. Unlike libraries, frameworks commonly use the
inversion of control principle which Averroes fails to handle
because it involves the framework being the main program.

To support security analyses in the context of handling
modern Java frameworks, we present GENCG, which extends
Averroes with improvements to its model to model execution
order as needed for flow-sensitivity and, at the same time,
restricting its model to give up on analysis completeness
and focus on code that is more likely to result in anal-
ysis issues. An evaluation with two real-world benchmark
suites—TaintBench [8] and F-Droid [9]—for Android taint
analysis shows that call graphs using the model generated by
GENCG cover significant more code (up to 4 times). As a
result, it greatly enhances recall of true analysis results on
a client taint analysis for Android, namely FlowDroid [10],
compared to FlowDroid’s hard-coded model. At the same

https://orcid.org/0000-0003-2054-0373

1 class MainActivity extends Activity {
2 Msg msg = new Msg();
3 public void onStart() {
4 Location loc = lm.getLastKnownLocation(”network”); // source
5 msg.setContent(loc.toString());
6 }
7

8 public void onPause() {
9 super.onPause();

10 Intent intent = new Intent(this, TaskService.class);
11 intent.putExtra(”data”, this.msg);
12 startService(intent);
13 }
14 }
15

16 class TaskService extends Service {
17 LooperThread looperThread;
18 Handler handler;
19 public int onStartCommand(Intent intent, int flags, int startId) {
20 handler = looperThread.handler;
21 Msg m = (Msg) intent.getSerializableExtra(”data”);
22 Message msg = handler.obtainMessage(1000, m);
23 handler.sendMessage(msg);
24 return super.onStartCommand(intent, flags, startId);
25 }
26 }
27

28 class LooperThread extends Thread {
29 Looper looper;
30 Context context;
31 Handler handler;
32 public void run() {
33 handler = new PushMessageHandler(context, looper);
34 }
35 }
36

37 class PushMessageHandler extends Handler {
38 String url = ”http://103.30.7.178/upMsg.htm”;
39 public void handleMessage(Message msg) {
40 List<NameValuePair> pars = new ArrayList<>();
41 pars.add(new BasicNameValuePair(”loc”, new

Gson().toJson(msg.obj)));
42 httppost.setEntity(new UrlEncodedFormEntity(pars, ”UTF−8”));
43 httpclient.execute(httppost); // sink
44 }
45 }

Listing 1. Motivating Example

time, our approach does not introduce more false positives.
To demonstrate GENCG’s applicability to other frameworks,
we experiment with the Spring framework [5] and shows
its effectiveness with evaluating on a micro benchmark suite
with 42 Spring applications contributed by us along with
the paper. Our artifacts are publicly available under https:
//doi.org/10.5281/zenodo.7553965.

II. BACKGROUND

Client analyses are the best judge of the utility of a given
call graph, and we focus on taint analyses, which are effective
in detecting many security vulnerabilities [11], [12], [13],
[8]. Here, we introduce our chosen taint analysis tool, Flow-
Droid [10], which is primarily designed for detecting privacy
leaks in Android apps. FlowDorid performs a field- and flow-
sensitive data-flow analysis using the IFDS solver [14] built
on top of the Soot framework [15]. The solver propagates

MainActivity a = new MainActivity();

...

a.onStart();

...

p

a.onPause();

...

p

p ...

Fig. 1. CFG of MainActivity in FlowDroid’s dummyMainMethod()

access paths throughout the app’s inter-procedural control-flow
graph. For inter-procedural analysis, by default, FlowDroid
computes the call graph via the SPARK algorithm built-in
the Soot framework [2], which is the most precise call graph
algorithm that is available in Soot [16]. SPARK computes
points-to sets to resolve the runtime type of the receiver of a
polymorphic call, hence the call graphs are more precise than
naive approaches such as Class Hierarchy Analysis (CHA) or
Rapid Type Analysis (RTA).

FlowDroid constructs a hard-coded model of the interactions
between the app and the Android framework. For calculating
alias information, FlowDroid reuses the same infrastructure
for the data-flow analysis by encoding the alias algorithm
as an IFDS problem propagating access paths. As any taint
analysis, FlowDroid starts tracking the taints created as source
statements, and reports them as sensitive statements, called
sinks. The list of sources and sinks are pre-defined Android
API calls relevant for detecting privacy leaks, e.g., the source
getLastKnownLocation() in Listing 1 returns the sen-
sitive information, i.e., a user’s last location, and if this data
reaches the sink HTTPClient.execute(), i.e., sending
HTTP Post, it should be reported as a data leak. The list of
sources and sinks in FlowDroid is configurable. Hence, users
may use the tool to detect other vulnerabilities in Android
apps, e.g., SQL injections.

Due to its modular and open architecture, many of the
components in FlowDroid can be exchanged with other Soot-
compatible components. This includes new call graph algo-
rithms, alias algorithms, source/sink specifications, etc. We use
this capability to run GENCG with FlowDroid’s taint analysis
in our evaluation (Section IV).

https://doi.org/10.5281/zenodo.7553965
https://doi.org/10.5281/zenodo.7553965

We introduce the FlowDroid model with a motivating ex-
ample. Listing 1 shows a non-trivial data leak from a malware
app. Two Android components are involved in this leak: an
activity MainActivity and a service TaskService. In
this leak, Inter-Component Communication (ICC) exchanges
sensitive data between the activity and the service.

The activity MainActivity first reads the user’s last
known location in the lifecycle method onStart() and
then stores it into the field msg (Line 4-5). Later, in
the lifeycle method onPause() of the activity, the msg
containing the location is passed to an intent that starts
the service TaskService (Line 11-12). TaskService
uses the handler PushMessageHandler to perform asyn-
chronous tasks. The msg containing the location is read
from the intent and is encapsulated in a Message ob-
ject for the handler. This Message object is sent by
sendMessage(Message) (Line 23), and then processed
later when handleMessage(Message) is called by the
Android framework. In the handleMessage(Message)
method, the last known location is leaked to a malicious server
via a HTTP Post (Line 43).

To detect this leak, analysis tools need a sound call
graph that captures all the calling relationships on the
data-flow path of this leak. It must also model control
flow of the lifecycle callback methods (e.g. onStart(),
onCreate()) inside each Android component and the data
exchange supported by ICC. To do so, FlowDroid creates
a dummyMainMethod() that models the lifecyle for each
Android component detected in the app. For example, Figure 1
shows the control-flow graph (CFG) of MainActivity
in FlowDroid’s dummyMainMethod(). Note the methods
onStart() and onPause involved in the leak are called in
the appropriate order. FlowDroid models control flow using an
opaque predicate p, i.e., a predicate which cannot be evaluated
statically. Therefore, at each branch on p, the analysis follows
both possible paths. This is how FlowDroid models direct
interactions between Android and the app. However, there
are indirect interactions too: Android invokes callback from
the “outside”, such as handleMessage(Message). Not
modeling such callbacks leads to missing edges in the call
graph. This is why in the example FlowDroid fails to detect
the data leak.

As illustrated above, FlowDroid’s model is often incom-
plete, but it is also hard to keep it current with development
of the Android framework itself. Moreover, the approach is
limited to the modeled framework and often tailored only
for one specific analysis tool. Other analysis tools would
need to either build on top of FlowDroid or implement their
own model generation. And Android is not the only popular
Java framework. In the enterprise domain, there are Java EE,
Spring, Apache Struts. These frameworks are rarely supported
by static analysis tools due to their complexities [17]. Thus,
one really desires a reusable approach to modeling Java
frameworks. Such an approach requires two components:

1) a framework-independent core that can be easily reused
across several frameworks, and

1 class Library extends AbstractLibrary {
2 static {
3 Library library = new Library();
4 AbstractLibrary abstractLibrary = AbstractLibrary.instance;
5 abstractLibrary.libraryPointsTo = library;
6 }
7 void doItAll(){
8 Library library = AbstractLibrary.instance;
9 /* class instantiation */

10 TaskService r1 = new TaskService();
11 library.libraryPointsTo = r1;
12 MainActivity r2 = new MainActivity();
13 library.libraryPointsTo = r2;
14 PushMessageHandler r3 = new PushMessageHandler();
15 library.libraryPointsTo = r3;
16 LooperThread r4 = new LooperThread();
17 library.libraryPointsTo = r4;
18 //...
19 /* libarary callbacks */
20 Handler r5 = (Handler) library.libraryPointsTo;
21 Message r6 = (Message) library.libraryPointsTo;
22 r5.handleMessage(r6);
23 Service r7 = (Service) library.libraryPointsTo;
24 r7.onCreate();
25 Service r8 = (Service) library.libraryPointsTo;
26 Intent r9= (Intent) library.libraryPointsTo;
27 r8.onStartCommand(r9, 1, 1);
28 Activity r10 = (Activity) library.libraryPointsTo;
29 r10.onPause();
30 Activity r11 = (Activity) library.libraryPointsTo;
31 r11.onStart();
32 //...
33 }
34 }

Listing 2. Library class generated by original Averroes with extended
Android front end.

2) a standalone tool that generates a model for a certain
type of static analysis tool, e.g., taint analysis tools.

In the next section, we introduce how our approach realizes
these two components.

III. APPROACH

GENCG is inspired by Averroes [7], which generates a
placeholder library that over-approximates the original Java
library. As Figure 2 shows, GENCG takes both the appli-
cation code and the framework code as input. It outputs
two files: instrumented-app.jar contains classes in
the original application as well as the instrumentation which
will be introduced later in this section in Improvement 4;
placeholder.jar is the model of the framework. One
can then take either the instrumented-app.jar or the
original application app (if there is no instrumentation hap-
pened as described in Improvement 4) together with the
placeholder.jar as input for call graph construction and
further analysis. In the following, we first briefly introduce
Averreos, then we focus on describing the limitations of
Averroes and how GenCG addresses them.

Averroes relies on the separate compilation assumption,
that is, all library classes are compiled in the absence of
the application classes, and hence cannot reference them
explicitly, and this limits how the library classes can interact
with the application. For example, it limits what kinds of

Application
(.apk, .jar)

Framework
(.jar)

Configuration
Files

GenCG

Instrumented-app.jar

placeholder.jar

Call Graph Construction Perform Taint Analysis
XOR

Fig. 2. Overview of applying GENCG for taint analysis.

1 public class averroes.AbstractLibrary extends java.lang.Object{
2 public java.lang.Object libraryPointsTo;
3 public static averroes.AbstractLibrary instance;
4 public abstract void doItAll(); //...
5 }

Listing 3. The AbstractLibrary class generated by original Averroes.

1 public class averroes.AbstractLibrary extends java.lang.Object{
2 public android.os.Handler LPT 1;
3 public android.os.Message LPT 2;
4 public android.app.Service LPT 3;
5 public android.content.Intent LPT 4;
6 public android.app.Activity LPT 5;
7 public android.os.Bundle LPT 6;
8 public java.lang.Thread LPT 7;
9 public java.lang.Runnable LPT 8;

10 //...
11 public static averroes.AbstractLibrary instance;
12 public abstract void doItAll(); //...
13 }

Listing 4. The AbstractLibrary class generated by GENCG.

1 public class Handler{
2 void sendMessage(Message m){
3 AbstractionLibrary lib = AbstractLibrary.instance;
4 lib.libraryPointTo = this;
5 // taint the libraryPointTo field
6 lib.libraryPointTo = m;
7 lib.doItAll();
8 }
9 }

Listing 5. Placeholder method for each original library method.

1 public class Library extends AbstractLibrary{
2 public void doItAll(){
3 // ...
4 Message m1 = new Message();
5 Library.libraryPointsTo = m1 ; // strong update!
6 // ...
7 Message m2 = (Message) Library.libraryPointsTo;
8 handler.handleMessage(m2);
9 }

10 }

Listing 6. Problem caused by repeatedly created objects.

objects a library class can hold references to, which methods
in the application can be called by the library and under
which circumstance. The authors of Averroes formulate eight
constraints in the paper. In the following, we introduce two
most important constraints:

a) Local Variables: Local variables in the library can
point to objects of application classes that are (1) instantiated
by the application and then passed into the library (2) stored
in fields accessible by the library code, or (3) the runtime type
of which is a subtype of java.lang.Throwable. Based
on this constraint, Averroes uses a single field to abstract all
the local variables in the library.

b) Method Calls: A method can be called if it is non-
static, overrides a method of a library class, and the library
can reference an object of its class or a subclass. This con-
straint basically says that there should be a subtyping relation
between the application class and the library class.

Averroes builds a class hierarchy based on both application
classes and the original library classes. It uses this class
hierarchy to identify classes that satisfy the constraints and
generates a Library class with a doItAll() method. This
doItAll() method implements potential library behaviors
such as class instantiation and library callbacks. For exam-
ple, any application class that satisfies the Local Variables
constraint would be initialized in the doItAll() method
and assigned to the libraryPointsTo field. Averroes
calls library callback methods in doItAll() based on the
subtyping relationship between the application classes and
library classes described in the Method Calls constraint.

Averroes also generates placeholder code: It (1) assigns each
callable method parameter to the libraryPointsTo field;
(2) calls doItAll() method of the Library class. This is pos-
sible, as in the placeholder library, a piece of generated code
initializes the Library class to be a singleton (see Listing 2);
(3) returns libraryPointsTo if the original library method
has a return type. Listing 5 shows the placeholder method for
a library method Handler.sendMessage(Message).

Averroes does address the two requirements we introduced
in last section, but it ultimately is not precise enough for
frameworks and a good taint analysis. Next, we explain the
specific limitations of Averroes when using the placeholder
library as replacement for the Android framework for taint
analysis. For each limitation, we introduce the improvement

we make in GENCG:
Limitation 1. Averroes uses a single libraryPointsTo

field to represent all objects that the library references, which
is too imprecise for a field-sensitive taint analysis. Once the
libraryPointsTo field is tainted, it will be propagated
everywhere and potentially result in many false positives,
since the Library.doItAll() method is called in every
placeholder method.

Improvement 1. To address this limitation, we introduce
typed libraryPointsTo fields: instead of only using one
field (libraryPointsTo in Listing 3) for all objects, for
each type of object that library could point to, we create a
field of this type in the AbstractLibrary class. We name
such typed fields with names starting with the prefix LPT.
Listing 4 shows our version of AbstractLibrary class
for the motivating example. This can be unsound if objects
are casted to other types in the application, i.e., a typed LPT
field might hold references of other types of objects. But it
is more precise than in the original Averroes, as it does not
pollute objects of other types when a typed LPT gets tainted.

A more fine-grained separation such as allocation sites is
not possible without a deep analysis of both the application
and library code, because allocation sites of objects that library
can point to can be either in the application code or framework
code. The Android SDK with stub methods would not be
sufficient. Technically, it is also very hard to generate the
placeholder library methods, as a method could be called on
different objects and with different arguments. Although our
type-based separation might still introduce false positives, it
turns out to work well for detecting real-world taint flows
later in our evaluation. Additionally, the Android SDK with
stub methods is sufficient for GENCG to create a model, as it
allows to build class hierarchy and resolve method signatures.

Limitation 2. Framework-based applications usually do not
have a main method, as the application’s flow of control is usu-
ally dictated by the framework, which is known as inversion of
control. One could use the Library.doItAll() method
generated by Averroes as the main entry point for analysis.
However, Library.doItAll() contains no control flow
at all, instead callbacks are invoked in arbitrary order, e.g.,
the method onStart() containing the source is called after
handleMessage() containing the sink is Listing 2. An
inter-procedural flow-sensitive taint analysis would miss the
data leak in the motivating example.

Improvement 2. To address Limitation 2, we introduce
control flow in the doItAll() method as shown in the CFG
Figure 3 for the motivating example. To make our approach as
general as possible for multiple frameworks, we do not pre-
cisely model which methods should be called in which order,
as it requires to study each specific framework documentation
carefully. Our goal is to add control-flow edges such that every
possible call sequence is covered. This means also unrealizable
call sequences, which could potentially introduce false posi-
tives. This is the trade-off for independence from framework
details. We introduce three kinds of edges with if-statements
using an opaque predicate p: skip-method edges (blue), skip-

Library.doItAll():

 AbstractLibrary ins= AbstractLibrary.instance

Handler handler = ins.LPT_1

Message m = ins.LPT_2

handler.handleMessage(m)

P

P

P

s = ins.LPT_3

P

s.onStartCommand(i, 1, 1)

P

s.onCreate()

P

...

P

Service s = ins.LPT_3;
Intent i=ins.LPT_4;

P

P

return

P

Activity a = ins.LPT_5

Legend: Skip-method edge Skip-class edge Loop edge

D

E

F

A

B

C
G

H

JSimulate
Service

Simulate
Activity

Fig. 3. The CFG of Library.doItAll() by GENCG.

class edges (red) and loop edges (green). Usually, not every
callback method is called every time when a library method is
called as the placeholder method does, the skip-method edges
allow cases that a callback method is not called. Similarly,
all calls to methods of a class can be skipped by the skip-
class edges. To simulate the effect that a method can be called
multiple times in the framework, we introduced the loop edges.
The combination of skip-method edges and loop edges ensures
that all possible orders of method calls are captured, including
the lifecycle of Android component classes. For instance, in
the part where service is simulated in Figure 3, although the
onStartCommand() appears first in the control-flow graph,
the path along labeled edges A-B-F-G-H-J-A-D-E-F-C
represents the execution path in which onCreate() is called
before onStartCommand() as defined in the service’s
lifecycle. The data leak in our example is on one of the paths
reflected in the CFG of doItAll() generated by GENCG.

Limitation 3. Repeatedly created objects could lead

to false negatives. Listing 5 shows the placeholder
method generated by the Averroes for the library method
Handler.sendMessage. As in the motivating example,
a field-sensitive taint analysis will taint the parameter of
Handler.sendMessage, then the libraryPointsTo
field ought to be tainted when it analyzes the placeholder
method. This tainted field will be then propagated into the
Library.doItAll() method as it is called in every place-
holder method. In Listing 6, the libraryPointsTo field
needs to stay tainted when it is assigned to a local variable
m2 in Library.doItAll() such that m2 is tainted when it
is passed to the call handler.handleMessage (the sink
is in this method). However, in Library.doItAll(), the
libraryPointsTo field is overwritten by a newly created
Message object. This means the points-to relationship needs
to be removed and the libraryPointsTo field should not
be tainted any more. This is the so called strong update [18],
a precise taint analysis usually considers this. As a result, the
data leak would be undetected.

Improvement 3. To address this, we move class instan-
tiation from doItAll() to a separate main() method in
the Library class to avoid unnecessary strong updates. The
doItAll() method only contains calls library callbacks. The
main() method will be taken by popular analysis frameworks
by default as entry point and is only called once in call graph
construction. In Android, most objects of application classes
are only created once by the framework.

Limitation 4. Averroes does not consider Java annotations
and results in missing edges in call graphs. In Java enterprise
frameworks such as the Spring framework, annotations are
commonly used to declare application code that will be called
reflectively. One can use annotations to declare entry point
methods (e.g. PostMapping) and even class fields that need
to be initiated (e.g. Autowired) by the framework.

Improvement 4. To address this, GENCG handles class,
method and field annotations that are supported by the frame-
work. These annotations (annotation class signatures) are
stored in configuration files used by GENCG and can be
extended easily. For annotated methods and classes, GENCG
creates artificial interfaces and instruments annotated classes
to be subtypes of these interfaces. These artificial interfaces
declare annotated methods and can be seen as a replacement
for the annotations. This way it reduces the problem to the
resolution of subtyping relationship that can be handled by
the original Averroes. GENCG will generate invocations of
those annotated methods in the library callbacks part of the
doItAll() method.

We briefly explain how GENCG could be applied for
supporting beans in the Spring framework. In Spring, objects
that are created and managed by the framework are called
beans. Beans can be defined both via XML configuration, or
in Java via annotations and code. Spring uses mainly three
annotations to resolve dependencies: @Autowired (defined
in Spring), @Inject (defined in JSR-330) and @Resource
(defined in JSR-250). They work similarly. They can be used
to annotate class properties (fields), constructors and setters.

Spring will then create objects for those annotated fields. To
handle beans, GENCG scans fields and methods in application
classes that are declared with these autowiring annotations and
do the following:

• For each field that is autowired, GENCG instruments the
default constructor to instantiate the field. If the type of
the field is a concrete class, an object of this type will
be created with default property values and assigned to
the annotated field. If the type of the field is an abstract
class or interface, for each concrete subclass, an object
will be created and assigned. Such subtying relationship
is obtained from the class hierarchy GENCG computes.

• The annotated constructor and setter are regarded as
annotated callback methods by GENCG. Invocations
of them are generated in the Library.doItAll()
method To stay general for multiple frameworks, GENCG
does not search the concrete property values of each
bean defined with the annotation @Bean or in the XML
configuration. It uses some default values for primitive
types and null for reference types. We lose precision by
doing this, however, call edges to methods of autowired
objects will be captured in the call graph construction
using the instrumented app.

In addition to these four main improvements, we remove
the array elements writes and exception handling parts from
the doItAll(). Our version of doItAll() only keeps
the library callbacks part, which is the main feature of Java
frameworks. This restricts the model to give up on analysis
completeness, yet let us focus on code that is more likely to
result in taint analysis issues.

IV. EVALUATION

We evaluate GENCG using the taint analysis of FlowDroid
as a client. We evaluate how the generated model for Android,
i.e., the placeholder.jar of the Android SDK, can be
used to improve call graphs constructed by Soot’s SPARK
algorithm and its impact on FlowDroid’s taint analysis. We do
not compare GENCG to Averroes because Averroes does not
support Android at all. Our evaluation answers the following
research questions:

RQ1. How good are the call graphs using the model
generated by GENCG in comparison to using FlowDroid’s
model?

RQ2. How does the model generated by GENCG impact
FlowDroid’s taint analysis?

A. Experimental Settings

We compare GENCG’s model to FlowDroid’s model using
two real-world benchmark suites:

• TaintBench [8]: an Android malware benchmark suites
for benchmarking static taint analysis. It consists of 39
Android malware apps and 203 precisely documented
true-positive and 46 false-positive taint flows. For each
benchmark app, there exists also a list of sources and
sinks for taint analysis tools to configure.

• F-Droid [9]: A dataset of 30 open-source real-world apps
from F-Droid used by Mordahl et al. in their evaulation of
Android taint analysis tools [9]. This dataset also contains
a documentation of 63 true-positive and 693 false-positive
taint flows.

For each app, we do the following:
• FlowDroid (version 2.7.1): the app’s apk file and the An-

droid SDK platform jar are used as input for FlowDroid.
• GENCG-FlowDroid: we first use GENCG to generate

the placeholder.jar file as replacement for the
Android SDK platform jar. The placeholder.jar
file and the app’s apk file are then used as input for
FlowDroid. We modify FlowDroid to use these two
files to construct call graph without generating its own
dummyMainMethod().

FlowDroid is configured with the sources and sinks provided
by each benchmark suite, which consists of sources and sinks
appeared in its ground truth. Other configuration options of
FlowDroid are kept default. By default, FlowDroid uses Soot’s
SPARK algorithm to construct call graph. We modified Flow-
Droid to dump a serialized call graph once it is constructed for
each app. We collect the following metrics for comparison:

• Model Generation Time (Tmodel): the time used by
GENCG to generate the placeholder.jar of the
framework model for each benchmark app.

• Analysis Time (Tanalysis): the time used by FlowDroid
to analyze either the original benchmark app with the
Android SDK or the placeholder.jar generated by
GENCG.

• Percentage of static reachable methods over concrete
methods (Pconcrete): This is the proportion of con-
crete (non-abstract) methods present in the call graphs.
For each suite, Pconcrete = Ccallgraph/Csuite, where
Ccallgraph is the number of concrete methods in the
serialized call graphs and Csuite is the number of con-
crete methods of all classes in the suite. In TaintBench,
there are 73,225 (Csuite) concrete methods, while it is
301,750 in F-Droid. We could also find the source code
of 28 of the 30 F-Droid apps to identify the application
classes1. The number of concrete methods of application
classes (App-only Csuite) in these 28 apps is 17,755.

• Percentage of static reachable methods over executed
methods (Pexecuted): This is the proportion of executed
methods that are present in the call graphs. Pexecuted =
Ecallgraph/Esuite, where Ecallgraph is the number of
methods in the serialized call graphs which are also
executed at runtime and Esuite is the number of executed
methods of all apps in the suite. Pexecuted is only
collected for F-Droid, but not for TaintBench, since many
of the apps in TaintBench cannot be executed with their
malware behavior as the services with which the apps
used to communicate are nowadays disabled. To collect
the executed methods of the F-Droid apps, the first three

1The source code of the apps net.osmand.plus 355 and
eu.kanade.tachiyomi 41 is not available on F-Droid any more.

authors explore each app separately and use the code
coverage tool ACVTool [19] to collect methods that are
executed at runtime during the exploration. Finally, the
executed methods collected by three authors are merged
together for each app. ACVTool crashed for 7 apps,
therefore, we could only collect the executed methods for
23 of the 30 F-Droid apps. The total number of executed
methods of these 23 F-Droid apps are 17,582 (Esuite) as
Table I shows, of them 5,759 are from application classes.

• Percentage of static reachable methods over ground-
truth methods (PgroundTruth): This is the proportion
of methods that contains the sources and sinks of true-
positive taint flows (we call these methods ground-
truth methods) that are present in the call graphs.
PgroundTruth = Gcallgraph/Gsuite, where Gcallgraph is
the number of methods in the call graphs which are also
ground-truth methods and Gsuite is the number of the
ground-truth methods in the suite.

• Number of true positives, Number of false positives,
Precision, Recall, F-Measure: these are standard metrics
for evaluating static analysis tools related to the detected
and true/false taint flows based on the ground truth when
running a client taint analysis.

B. RQ1. How good are the call graphs using the model
generated by GENCG in comparison to using FlowDroid’s
model?

To answer this question, we look at the call graphs con-
structed with Soot’s SPARK algorithm (FlowDroid’s default
call graph algorithm) and refer to three metrics, Pconcrete,
Pexecuted, and PgroundTruth, in the following. We discuss
them individually for each benchmark.

TaintBench: There are in total 73,225 concrete methods
in the 39 benchmark apps. The call graphs based on the
model generated by GENCG cover 41.23% of these concrete
methods, while with FlowDroid’s model Pconcrete is only
10.86% as Table II shows. We see an increase of Pconcrete

using GENCG for all TaintBench apps.
Table IV shows the PgroundTruth values. In the case

of TaintBench, we see that using the model generated by
GENCG, the call graphs have a better coverage of the meth-
ods in the ground truth than FlowDroid, i.e., 95.32% vs.
68.23%, meaning that call graphs using the model generated
by GENCG are likely to enable a client taint analysis to detect
true taint flows in the ground truth. We will report more on
this when answering RQ2.

F-Droid: Among all 30 apps, there are 301,750 concrete
methods, of which 17,755 are from application classes as
Table I shows. Table II shows the Pconcrete values: 14.23%
for GENCG-FlowDroid and 4.51% for FlowDroid. Similarly,
if we only count application-only methods covered in the
call graphs, the values are 68.0% for GENCG-FlowDroid
and 26.97% for FlowDroid. Overall, Pconcrete of GENCG-
FlowDroid is about three times higher than FlowDroid. In-
dividually per app, GENCG-FlowDroid shows higher value
on all 30 apps when considering all classes in app’s apk

TABLE I
BENCHMARK SUITES

#Apps Csuite App-only Csuite Esuite App-only Esuite

TaintBench 39 73,225 N/A N/A N/A
F-Droid 30 301,750 17,755 17,582 5,759

TABLE II
% STATIC REACHABLE METHODS OVER CONCRETE METHODS (Pconcrete)

FlowDroid GENCG-FlowDroid #Apps with higher %
TaintBench 10.86 41.23↑ 39 (of 39)
F-Droid 4.51 14.23↑ 30 (of 30)
F-Droid (app-only) 26.97 68.0↑ 26 (of 28)

TABLE III
% STATIC REACHABLE METHODS OVER EXECUTED METHODS (Pexecuted)

FlowDroid GENCG-FlowDroid #Apps with higher %
F-Droid 32.82 72.38↑ 21 (of 23)
F-Droid (app-only) 48.98 83.73↑ 20 (of 23)

TABLE IV
% STATIC REACHABLE METHODS OVER GROUND-TRUTH METHODS (PgroundTruth)

FlowDroid GENCG-FlowDroid
TaintBench 68.23 95.32↑
F-Droid 88.71 91.94↑

file, and in 26 of 28 apps (of which application source code
is available) when considering application-only methods. We
sample the missing methods in the call graphs constructed
with our approach in these two apps. We find out that they
are mostly UI callback which are specified the layout XML
files of the apps. Modeling such method calls from Android
requires parsing the layout XML files. Because such XML
configuration is different in every framework and our approach
is designed to be reusable across several frameworks, we do
not model this specifically for Android. This could be done,
of course, though, with appropriate engineering effort.

Based on 23 apps from F-Droid for which we are able
to dynamically explore the apps by running ACVTool and
compile a list of executed methods at runtime, we report
Pexecuted in Table III. In both variants, i.e., considering
all methods or application-only methods, GENCG-FlowDroid
has significant higher Pexecuted, 72.38% vs. 32.82% for all
methods and 83.73% vs. 48.98% for application-only methods.

Finally, considering the PgroundTruth values in Table IV,
GENCG-FlowDroid also achieves a better coverage than Flow-
Droid (91.94% vs. 88.71%).

Compared to FlowDroid’s model, call graphs constructed
using the model generated by GENCG show to have a much
better percentage of static reachable methods over the concrete
methods, executed methods, and the methods from the ground
truth of both TaintBench and F-Droid.

C. RQ2. How does the model generated by GENCG impact
FlowDroid’s taint analysis?

To judge the accuracy impact of our approach on Flow-
Droid’s taint analysis, we use the precision, recall, and F-
measure metrics to answer this question. For performance
impact, we look into the time used for generating the model
by GENCG Tmodel and the analysis time used by FlowDroid
Tanalysis. The time overhead of GENCG is measured by
Tmodel, which is performed only once for each app and can
be reused for multiple client analysis tools that analyze Java
byte code.

Table VI shows the comparison between FlowDroid and
GENCG-FlowDroid evaluated on TaintBench. As we can see
in this table, Using the call graphs based on the Android
model generated by GENCG, FlowDroid detects 19 (67 vs.
48) more true positives with even less false positives (9 vs.
14). As the call graphs constructed with our approach enables
FlowDroid’s taint analysis to analyze more code, the recall
based on TaintBench’s ground truth is improved from 0.24 to
0.33. Although a generic approximation like our approach
can be noisy, the evaluation results show that it does not
affect the client taint analysis in detecting real-world malicious
taint flows in TaintBench. Even the precision is increased
from 0.77 to 0.88. As a result, the F-measure improves 11%
(0.37 vs. 0.48).

Regarding F-Droid benchmarks, we have two fewer true
positive as Table VII shows; this is because having extraneous
sources and sinks unexpectedly impacts FlowDroid’s taint
computation. This was previously discovered by Luo, Pauck
et al. [8]. When configuring FlowDroid with only the sources

TABLE V
TIME IN SECONDS

FlowDroid GENCG-FlowDroid
Analysis (Tanalysis) Analysis (Tanalysis) Model Generation (Tmodel)

TaintBench 161.81 1444.8 311.92
F-Droid 1051.83 7205.74 428.27

TABLE VI
PRECISION, RECALL, AND F-MEASURE REGARDING THE TAINT FLOWS

FlowDroid GENCG-FlowDroid

TaintBench

#True Positives 48 67
#False Positives 14 9
Precision 0.77 0.88
Recall 0.24 0.33
F-measure 0.37 0.48

TABLE VII
TRUE-POSITIVE, FALSE-POSITIVE, AND UNCLASSIFIED TAINT FLOWS

FlowDroid GENCG-FlowDroid

F-Droid
#True Positive 11 9
#False Positive 16 1
#Unclassified 350 594

and sinks in these two true-positive flows, FlowDroid could
detect them using the model generated by GENCG. Moreover,
FlowDroid produces fewer false positives based on existing
ground truth when using our model. GENCG also enables
FlowDroid to detect more taint flows, however, these are not
documented in the ground truth. As it is infeasible to manually
triage these flows due to the large number and the complexity
of the apps, hence we mark them as unclassified in Table VII.
Note that we only count a taint flow as true/false positive if it
matches a true-positive/false-positive in the ground-truth docu-
mentation of F-Droid. Because there are two many unclassified
flows, we can not judge the impact on precision, recall and
F-measure.

Table V shows the values for Tmodel used by GENCG and
Tanalysis for both approaches evaluated on both benchmark
suites. As previously seen, using GENCG’s models, FlowDoid
detects more taint flows and hence a better recall, which
causes an increased analysis time. In the TaintBench apps,
the increase is from 161.81 to 1444.8 seconds, whereas for
the F-Droid apps, the increase is about 7 times.

GENCG improves accuracy of FlowDroid’s taint analysis in
both precision and recall, when evaluated on TaintBench.
GENCG also enables FlowDroid’s taint analysis to detect more
taint flows in F-Droid apps. Due to the larger call graphs
using models generated GENCG, FlowDroid’s taint analysis
takes longer on those benchmarks. Additionally, it takes time
to generate the model with GENCG.

V. APPLICATION TO THE SPRING FRAMEWORK

To evaluate how effectively GENCG generates models for
Spring applications, we develop a benchmark suite called

CGBench with ground-truth documentation. CGBench con-
sists of 42 Spring apps classified into 6 categories as shown
in Table VIII. 39 of them are micro benchmark apps to
demonstrate specific Spring features with one or two built-
in taint-style vulnerabilities such as SQL Injection, XSS,
Log Injection etc. The vulnerabilities in these apps are all
true taint flows. 3 of the 42 apps are bigger apps that are
built to demonstrate vulnerabilities. These 3 apps contain
multiple Spring features and taint-style vulnerabilities. The
ground truth documentation CGBench consists of 60 true taint
flows and 10 false taint flows (which imprecise tools could
detect). We modify FlowDroid to analyze Spring applications,
configure it with the sources and sinks in each benchmark
app, and analyze the instrumented-app.jar file and
placeholder.jar file generated by GENCG for each app.
Table VIII shows the evaluation results on CGBench. In total,
our modified version of FlowDroid detects 45 true-positive
taint flows out of 60 and 4 false-positive taint flows out of
10, which makes the precision 0.92, the recall 0.75 and the
F-measure 0.83.

VI. THREATS TO VALIDITY

Since our approach is designed to be general, we only
consider language-level concepts (e.g. subtyping, annotations)
and explicitly did not model framework behaviors that require
parsing configuration files (e.g. XML, HTML files). Client
analyses which need such information must add this support.
Our type-based model is more precise than Averroes for taint
analysis as we show in our evaluation, yet it might not work
well for code which contains a lot of type casting code,
as it pollutes the type-based pointers. Our approach mainly
focuses on modeling callback invocations, control-flows and
object creations by frameworks to enable construction of sound
application-only call graphs (do not contain calls between
framework methods). Aliasing through assignments inside the
framework code and its side effects are not in the scope
of this work. A threat to the external validity is that our
evaluation results have limited generalizability to other client
analyses. Because our focus is constructing call graphs that
allow taint analyses to effectively find more real-world issues,
we only evaluated our approach with the taint analysis in
FlowDroid. FlowDroid uses StubDroid [20] to generate sum-
maries for handling the taint propagation through common
library methods. These summaries cover many methods from
the Android framework. Our modified version of FlowDroid
uses existing summaries in FlowDroid and only analyzes
placeholder methods if no summaries are available. Other
taint analysis approaches that do not model taint propagation

TABLE VIII
EVALUATION RESULTS ON CGBENCH.

No. Category #True Taint Flows #False Taint Flows #True Positive #False Positive
1 HTTP Request Handlers 9 0 8 0
2 Component Classes 5 0 4 0
3 Handler Interceptors 6 0 6 0
4 Parameter Sources 19 0 16 0
5 Configuration 6 1 0 0
6 Demo Apps with Mixed Features 15 10 10 4∑

60 10 45 4
Precision 0.92

Recall 0.75
F-measure 0.83

through library methods, might still produce imprecise results
with our approach.

VII. RELATED WORK

Many previous approaches have addressed the challenge
of analyzing apps within certain frameworks. A significant
number of these approaches focus on the Android framework.
FlowDroid [10] precisely models the Android lifecycle and
UI callback handling by creating a dummy main method.
Amandroid [13] and IccTA [21] extend this model by in-
troducing control and data dependencies between Android
components such that inter-component communications are
also captured. These analyses use the Android model and do
not consider the implementation of the Android framework.
On the other hand, DroidSafe [22] manually crafts framework
with stub implementations. Similar to the placeholder library
used in our approach, these stub implementations are analyzed
as replacements of the original framework implementation.
However, as the authors themselves pointed out, implementing
these stubs is labor-intensive and requires expertise in Android.
In these tools the model is hard-coded in the tool’s imple-
mentation which makes it hard to reuse in other analyses.
Both Droidel [23] and our approach automatically create
app-specific stubs of the Android framework with a single
entry point. While the authors of Droidel acknowledged that
their approach is not suitable for flow-sensitive analyses, our
approach with the adapted FlowDroid’s taint analysis is flow-
sensitive. Droidel still requires a one-time manual modification
of the original Android framework source code to replace
the usage of reflection with the Droidel’s own interfaces.
In comparison, our approach only needs the stub version of
the framework and is not specific to Android. We could not
compare our approach to Droidel in an experiment, as the
original Android framework source code used by Droidel was
not available and even the authors do not have it anymore.

There are few approaches that focus on the generating a
model for the Android callbacks. Perez et al. [24] proposed
a method for generating, so called, Predicate Callback Sum-
maries (PCSs), which are control flow–based graph represen-
tations of the callback API implementations. PCSs can further
be integrated in other analyses. While Perez et al. focus on
non-GUI-based Android callbacks, Yang et al. [25] proposed
a method for generating the model of the GUI-based callbacks.

This model is a context-sensitive graph-based representation.
Later this model can be incorporated in other analyses, for
example to construct a full GUI model of a given app for
program understanding or test generation.

In the area of Java web frameworks, IBM’s TAJ [26]
and its follow-up work F4F [27] are among the best-known
approaches targeting Java enterprise applications. TAJ is a
taint analysis that has partly modeled the Apache Struts
framework and Enterprise Java Beans in its analysis engine.
Adding a new framework support requires engineering effort
in the analysis engine which is similar to most Android taint
analyses, such as FlowDroid and Amandroid. The follow-
up work F4F improves this by proposing a specification
language WAFL that integrates with the engine where different
frameworks can be modeled and enables reusability. However,
to support new frameworks, the WAFL specifications need to
be written manually which requires high engineering effort.
In our approach, the generated placeholder library can be
processed by any existing Java analysis frameworks (e.g., Soot,
WALA) and only the configurable lists of APIs (e.g., entry
point classes/methods/annotations, annotations for dependency
injection) should be extended. Similar to F4F, recent work
JackEE [17] also introduces a rule-based specification that
covers general concepts for modeling Java enterprise frame-
work behaviors. JackEE leverages Doop and its model of a
new framework is a collection of logic rules, which can be
understood by Doop.

VIII. CONCLUSION

We present GENCG—a general approach to modeling Java
frameworks. GENCG produces a placeholder jar file that can
be used as a sound replacement of the original framework by
precise call graph construction algorithms and further client
analyses. We demonstrate its generalization with both the
Android and the Spring framework. A throughout evaluation
with two real-world Android taint analysis benchmark suites
shows our approach is especially effective in enabling a precise
flow-, field- and context-sensitive taint analysis in detection of
more real-world issues without introducing much noise. We
constructed a micro benchmark suite—CGBench—consisting
of common taint-style vulnerabilities in Spring-based web
applications. We evaluate our approach using this suite and
show the applicability of our approach on Spring framework.

REFERENCES

[1] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Array-data
flow analysis and its use in array privatization,” in Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’93. New York, NY, USA:
Association for Computing Machinery, 1993, p. 2–15. [Online].
Available: https://doi.org/10.1145/158511.158515

[2] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundare-
san, “Soot - a java bytecode optimization framework,” in Proceedings
of CASCON. IBM, 1999.

[3] G. Piskachev, R. Krishnamurthy, and E. Bodden, “Secucheck: Engineer-
ing configurable taint analysis for software developers,” in 2021 IEEE
21st International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2021, pp. 24–29.

[4] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri,
“Andromeda: Accurate and scalable security analysis of web
applications,” in Fundamental Approaches to Software Engineering
- 16th International Conference, FASE 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, 2013, pp. 210–225.
[Online]. Available: https://doi.org/10.1007/978-3-642-37057-1 15

[5] V. Tanzu, “Java spring framework,” https://spring.io/, online; accessed
27 September 2022.

[6] Google, “Android framework,” https://www.android.com/.
[7] K. Ali and O. Lhoták, “Averroes: Whole-program analysis without

the whole program,” in ECOOP 2013 - Object-Oriented Programming
- 27th European Conference, Montpellier, France, July 1-5, 2013.
Proceedings, ser. Lecture Notes in Computer Science, G. Castagna,
Ed., vol. 7920. Springer, 2013, pp. 378–400. [Online]. Available:
https://doi.org/10.1007/978-3-642-39038-8 16

[8] L. Luo, F. Pauck, G. Piskachev, M. Benz, I. Pashchenko, M. Mory,
E. Bodden, B. Hermann, and F. Massacci, “Taintbench: Automatic
real-world malware benchmarking of android taint analyses,” Empir.
Softw. Eng., vol. 27, no. 1, p. 16, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-021-10013-5

[9] A. Mordahl and S. Wei, “The impact of tool configuration spaces on
the evaluation of configurable taint analysis for android,” in ISSTA
’21: 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, Denmark, July 11-17, 2021, C. Cadar
and X. Zhang, Eds. ACM, 2021, pp. 466–477. [Online]. Available:
https://doi.org/10.1145/3460319.3464823

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014, M. F. P. O’Boyle and K. Pingali, Eds. ACM, 2014, pp.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[11] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman,
“Taj: Effective taint analysis of web applications,” SIGPLAN Not.,
vol. 44, no. 6, p. 87–97, jun 2009. [Online]. Available: https:
//doi.org/10.1145/1543135.1542486

[12] G. Piskachev, J. Späth, I. Budde, and E. Bodden, “Fluently
specifying taint-flow queries with fluenttql,” Empirical Softw. Engg.,
vol. 27, no. 5, sep 2022. [Online]. Available: https://doi.org/10.1007/
s10664-022-10165-y

[13] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and
general inter-component data flow analysis framework for security
vetting of android apps,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, G. Ahn, M. Yung,
and N. Li, Eds. ACM, 2014, pp. 1329–1341. [Online]. Available:
https://doi.org/10.1145/2660267.2660357

[14] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 49–61. [Online]. Available:
https://doi.org/10.1145/199448.199462

[15] S. Arzt, S. Rasthofer, and E. Bodden, “The soot-based toolchain for an-
alyzing android apps,” in 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), 2017, pp.
13–24.

[16] O. Lhoták and L. J. Hendren, “Scaling java points-to analysis using
SPARK,” in Compiler Construction, 12th International Conference, CC
2003, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings, ser. Lecture Notes in Computer Science, G. Hedin,
Ed., vol. 2622. Springer, 2003, pp. 153–169. [Online]. Available:
https://doi.org/10.1007/3-540-36579-6 12

[17] A. Antoniadis, N. Filippakis, P. Krishnan, R. Ramesh, N. Allen,
and Y. Smaragdakis, “Static analysis of java enterprise applications:
frameworks and caches, the elephants in the room,” in Proceedings
of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK, June
15-20, 2020, A. F. Donaldson and E. Torlak, Eds. ACM, 2020, pp.
794–807. [Online]. Available: https://doi.org/10.1145/3385412.3386026

[18] A. De and D. D’Souza, “Scalable flow-sensitive nalysis for java with
strong updates,” in ECOOP 2012 - Object-Oriented Programming
- 26th European Conference, Beijing, China, June 11-16, 2012.
Proceedings, ser. Lecture Notes in Computer Science, J. Noble,
Ed., vol. 7313. Springer, 2012, pp. 665–687. [Online]. Available:
https://doi.org/10.1007/978-3-642-31057-7 29

[19] A. Pilgun, O. Gadyatskaya, Y. Zhauniarovich, S. Dashevskyi, A. Kush-
niarou, and S. Mauw, “Fine-grained code coverage measurement in
automated black-box android testing,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–35, 2020.

[20] S. Arzt and E. Bodden, “Stubdroid: automatic inference of precise
data-flow summaries for the android framework,” in Proceedings of the
38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser, and
L. A. Williams, Eds. ACM, 2016, pp. 725–735. [Online]. Available:
https://doi.org/10.1145/2884781.2884816

[21] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. D. McDaniel, “Iccta:
Detecting inter-component privacy leaks in android apps,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1, A. Bertolino,
G. Canfora, and S. G. Elbaum, Eds. IEEE Computer Society, 2015,
pp. 280–291. [Online]. Available: https://doi.org/10.1109/ICSE.2015.48

[22] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen,
and M. C. Rinard, “Information flow analysis of android
applications in droidsafe,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. The Internet Society,
2015. [Online]. Available: https://www.ndss-symposium.org/ndss2015/
information-flow-analysis-android-applications-droidsafe

[23] S. Blackshear, A. Gendreau, and B. E. Chang, “Droidel: a general
approach to android framework modeling,” in Proceedings of the 4th
ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, SOAP@PLDI 2015, Portland, OR, USA, June 15 - 17, 2015,
A. Møller and M. Naik, Eds. ACM, 2015, pp. 19–25. [Online].
Available: https://doi.org/10.1145/2771284.2771288

[24] D. D. Perez and W. Le, “Generating predicate callback summaries
for the android framework,” in Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems, ser.
MOBILESoft ’17. IEEE Press, 2017, p. 68–78. [Online]. Available:
https://doi.org/10.1109/MOBILESoft.2017.28

[25] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-flow
analysis of user-driven callbacks in android applications,” in Proceedings
of the 37th International Conference on Software Engineering - Volume
1, ser. ICSE ’15. IEEE Press, 2015, p. 89–99.

[26] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman,
“Taj: Effective taint analysis of web applications,” in Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 87–97. [Online].
Available: https://doi.org/10.1145/1542476.1542486

[27] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and
R. Berg, “F4F: taint analysis of framework-based web applications,”
in Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 -
27, 2011, C. V. Lopes and K. Fisher, Eds. ACM, 2011, pp. 1053–1068.
[Online]. Available: https://doi.org/10.1145/2048066.2048145

https://doi.org/10.1145/158511.158515
https://doi.org/10.1007/978-3-642-37057-1_15
https://spring.io/
https://www.android.com/
https://doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1007/s10664-021-10013-5
https://doi.org/10.1145/3460319.3464823
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1007/s10664-022-10165-y
https://doi.org/10.1007/s10664-022-10165-y
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/3385412.3386026
https://doi.org/10.1007/978-3-642-31057-7_29
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1109/ICSE.2015.48
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://doi.org/10.1145/2771284.2771288
https://doi.org/10.1109/MOBILESoft.2017.28
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/2048066.2048145

	Introduction
	Background
	Approach
	Evaluation
	Experimental Settings
	RQ1. How good are the call graphs using the model generated by GenCG in comparison to using FlowDroid's model?
	RQ2. How does the model generated by GenCG impact FlowDroid's taint analysis?

	Application to the Spring Framework
	Threats to Validity
	Related Work
	Conclusion
	References

