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Abstract. Since its inception two decades ago, Soot has become one of
the most widely used open-source static analysis frameworks. Over time
it has been extended with the contributions of countless researchers. Yet,
at the same time, the requirements for Soot have changed over the years
and become increasingly at odds with some of the major design decisions
that underlie it. In this work, we thus represent SootUp, a complete
reimplementation of Soot that seeks to fulfill these requirements with a
novel design, while at the same time keeping elements that Soot users
have grown accustomed to.
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1 Introduction

Soot is a program analysis framework for Java and Android. It has been pop-
ular in academia for prototyping novel static and dynamic analysis approaches,
many of which have been published at international conferences [1, 3, 5, 6, 13,
14, 19, 20, 22, 28]. In 2000 [29], Soot was introduced as an optimization frame-
work for Java. Back then, when just-in-time compilers were still in their infancy,
ahead-of-time optimization of Java code was a major field of research. Over the
years, the research community’s interest has been dominantly shifting to static
code analysis, for diverse purposes. Soot remained relevant due to some of its
strengths, particularly its popular intermediate representations.

One of the core features of Soot is its main intermediate representation
(IR), Jimple [30]. When seeking to perform program analysis on Java, both
bytecode and source code are usually suboptimal representations to work with.
Java bytecode represents a program to be executed, using a stack-based instruc-
tion set. Java source code, on the other hand, represents it on a higher level, using
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nested scopes and control-flow constructs for better readability. Soot’s Jimple
IR is a so-called three-address code representation [12] that combines the best of
both worlds: It uses local variables instead of a stack. This simplifies data-flow
equations because all values that an operation consumes or produces are readily
accessible through its operands. It also uses explicit control flow without nesting,
i.e., solely through conditional or unconditional gotos. In result, every Jimple in-
struction is atomic, there can be no nesting. Complex source-code statements,
which perform multiple consecutive operations, e.g. a numerical computation
with a subsequent cast, are broken down into multiple individual IR instruc-
tions. This enables the creation of simple control flow graphs (CFGs), which one
can then use to analyze a method’s control and data flow with relative ease.

Furthermore, Soot offers multiple algorithms, with varying degrees of pre-
cision and complexity, for constructing call graphs. They resemble an essential
data structure for performing inter-procedural static analysis, as it models how a
program’s methods call one another. For object-oriented programming languages
like Java, call graph construction is particularly challenging. This is because in
Java method calls are virtual by default, in which case their call target is de-
pendent on an object’s runtime type. A reference variable’s declared type can
only bound the possible call targets. To resolve call targets precisely one must
compute all of the variable’s possible runtime types. A popular way to do this is
through pointer analysis. Soot provides such call graph computation through
its pointer analysis framework Spark.

Over the years, Soot has frequently been extended to incorporate new fea-
tures, and, in doing so, even early on it became clear that some of its design
decisions were suboptimal, yet hard to remedy after the fact. For instance, Soot
has always been all-around monolithic. It heavily uses the singleton design pat-
tern, causing strong coupling, and it always sought to be both a command line
tool and a library, causing sometimes conflicting views on who owns the thread
of control. In Soot, everything can be accessed and manipulated via the single-
ton “scene”. This forbids keeping multiple scenes in memory, and any sensible
parallelization. Soot also contains many features that by now are considered ob-
solete, e.g. other barely used IRs and an outdated source-code frontend, which
are hard to remove without breaking useful but untested functionality.

This paper presents Soot’s successor framework SootUp. With SootUp,
we aim to keep the most important features of Soot, yet to also overcome its
major drawbacks. We designed SootUp as a modular library. This allows one
to pick out the necessary modules for a specific use case. For instance, clients
that only require bytecode analysis would add a dependency to the bytecode
frontend module. This is possible due to SootUp’s core module being a generic
implementation that allows plugging in frontends for arbitrary programming
languages. Instead of a singleton scene object, SootUp introduces the concept
of views, where each view may hold a different version of the analyzed program,
or different programs altogether. To enable safe parallelization and caching, the
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new Jimple IR is immutable by default, allowing instrumentation only at certain
safe points. SootUp is open-sourced at GitHub.1

To summarize, this paper presents the following contributions:

– The design decisions behind SootUp’s architecture that accommodate cur-
rent research requirements,

– a demonstration of its new API, which aims for better usability,
– suggestions for Soot-based analysis tools on how to switch to SootUp, and
– the roadmap for further development of SootUp.

The remainder of this paper is organized as follows. In Section 2, we introduce
the design decisions that shaped SootUp. In Section 3, we demonstrate the new
API on example use cases. In Section 4, we list currently supported tools and
discuss how to upgrade tools to use SootUp. In Section 5, we explain SootUp’s
development process and how one can contribute to it. We present the future
work in Section 6, related work in Section 7 and conclude with Section 8.

2 Design Decisions

We next discuss the main design decisions that underly SootUp, and how they
address some of the major shortcomings of Soot. We introduce the new archi-
tecture and excerpts of the new API.

2.1 Modular Architecture

SootUp’s most notable architectural difference from its predecessor is the clear
separation of its components into independent modules. Figure 1 shows its archi-
tectural overview. One of the goals of the new architecture is to allow SootUp
to be used as a language-independent static analysis framework. It is not tightly
coupled to any programming language. The most recent release (1.1.2) includes
frontends for Java bytecode, Java source code and a now generic, i.e., language-
independent form of Jimple. We delegate the language support to external
frontend providers and expect them to extend the generic Jimple. This is a
significantly different mechanism than Soot had offered for language support
before. Previously, to analyze programs not in Java, one needed to convert their
code to the (Java-specific) Jimple. With SootUp, instead one defines language-
specific features by extending the core set of Jimple language constructs.

The core module encapsulates the main functionality based on the generic
Jimple. It defines the Jimple language constructs such as expressions, constants
and statements. The statements make up control-flow graphs (CFGs), which may
be forward, backward, mutable or immutable. The CFGs are representations for
the bodies of SootMethods. SootMethods constitute SootClasses, the backbone
of SootUp’s core object model. All of these objects are accessible through Views.

We have conceptualized the View as the main interface the user interacts
with. In the case of a single view, this corresponds to the Scene object in Soot.

1 https://github.com/soot-oss/SootUp/

https://github.com/soot-oss/SootUp/
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Fig. 1. Overview of SootUp’s Architecture. White boxes are Java modules.

Because of the Scene’s singleton nature, running multiple analyses simultane-
ously was virtually impossible in Soot [15]. SootUp overcomes this drawback
by allowing as many Views as desired to co-exist.

Additionally, SootUp comes with a new extensible Call Graph framework.
It allows plugging in arbitrary strategies for resolving virtual method dispatches.
These strategies could vary, for instance, to optimize the precision or scalability,
which are often tweaked using different Pointer Analysis algorithms. Interproce-
dural Dataflow Analysis is one of the most successful methods for detecting bugs
and security vulnerabilities. SootUp supports out-of-the-box context-sensitive
data-flow analysis using the popular Heros [4] dataflow analysis framework.

2.2 On-Demand Class Loading

While Soot loads all SootClasses that are referenced in a currently resolving
SootClass, SootUp is designed with a layer of indirection. SootUp makes use
of identifiers to reference actual, possibly already loaded, instances of a respec-
tive SootClass and stores those identifiers that reference other SootClasses,
SootMethods or SootFields. This decreases unnecessary computations of un-
used SootClasses, i.e. those which are referenced but whose contents are not of
interest. Doing so, additionally, enables parallel class loading. Because the load-
ing of a class does not depend on the loading of the classes that it references,
each class can be loaded independently. As a side effect, it renders the concept
of phantom classes, known from Soot, obsolete, as its purpose is to create a fa-
cade SootClass in case of missing a class definition of a referenced SootClass.
This case is now cleanly handled by the View, which simply returns no further
information.
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Fig. 2. SootUp’s On-Demand Class Loading Mechanism

Figure 2 models SootUp’s new on-demand class loading mechanism. The
View is the central access point that streamlines the resolving and caching pro-
cess. The caching strategy can be configured by using one of the cache providers.
FullCache is the default option, which suffices in most cases where the cache
does not need to be freed. Alternatively LRUCache manages the cache based on
the least recent use and MutableFullCache gives the control of the cache to
the client. After obtaining a SootClass, by querying it with its unique identifier
(ClassType) from the View, one can obtain its SootMethods and SootFields
that are cached within the SootClass.

2.3 Focus on an Intuitive API

Soot’s users often complain about a lack of documentation. Its issue tracker is
filled with ”how to”2 questions. We believe the underlying problem is, primarily,
its complicated API design. Based on our past experience, when developing
SootUp, an intuitive API design has always been strongly in focus.

Figure 3 shows the process of setting up a Project, creating a View and
accessing a SootMethod object. First, users create an AnalysisInputLocation

that points to a target program’s path. Second, they create a Project by spec-
ifying the target language. The Project can be used to create a View. At this
point, the View knows where the target program is located and which language
frontend needs to be used to load its classes.

2 https://github.com/soot-oss/soot/issues?q=how+to+in%3Atitle

https://github.com/soot-oss/soot/issues?q=how+to+in%3Atitle
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Fig. 3. SootUp’s API for Creating a View and Accessing a SootMethod

The View loads the elements of the target program only when they are
queried, and memoizes them through configurable caching providers enabled
by the new immutable IR design. The memoization is fine-grained, it works
at the level of field, method, interface and modifier definitions. SootUp can
create references to all of these objects via a corresponding language-specific
IdentifierFactory. The references, i.e., the identifiers, are then used to access
the queried elements of the target program.

Class types and signatures (for methods and fields) are considered global
identifiers, across possibly concurrent instances of Projects and Views. They
are created and pooled by the singleton instance of IdentifierFactory to re-
duce memory consumption. Additionally, it is cheaper to invoke hashCode() and
equals() on the identifiers than on the IR objects that the identifiers reference.

2.4 Library by Default

Soot had always been designed to be a standalone CLI (command-line interface)
tool. This meant that it was expected to own the thread of control, which often
hindered a tight integration of Soot into integrated development environments
(IDEs) or CI/CD pipelines, which are themselves frameworks and expect to
own the thread of control as well. Also, a CLI aggregates all of the underlying
functionality and makes it accessible via a single channel. This requires bundling
everything together and contradicts our goals of providing lean modules.

To avoid this, we have conceptualized SootUp as a library by default. In
SootUp, clients can depend on individual modules. For instance, to access the
CFGs of a compiled program’s methods, one needs to add a dependency to the
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Java Bytecode Frontend and Core modules. Further module dependencies can
gradually be added later on when needed.

The library nature allows the clients to own the thread of control. This is
preferable, especially, when using SootUp for other purposes than program
analysis, or when using it as part of other analysis frameworks. SootUp also
provides rather sophisticated functionality as a framework, with inversion of
control, for instance when building call graphs or performing dataflow analyses.

Yet, SootUp is not quite stateless. As shown in Figure 3, the state is man-
aged mainly by the IdentifierFactory and View. View instances keep ref-
erences to all the memoized objects, they are not garbage collected unless the
client releases the reference to the View. IdentifierFactory, on the other hand,
maintains the global state of unique identifiers statically. It is the only singleton
in SootUp, which might be shared across different views. In other words, if the
client terminates then only the state in the IdentifierFactory will be retained.

2.5 Immutable IR by Design

Soot was designed as a program optimization tool. Its main purpose was to
enable the analysis and transformation of method bodies. As the research trend
has shifted from program optimization to program analysis, we believe there is
limited use in still maintaining mutable objects in a mutable IR.

Mutable objects are not easily shared between several entities. One needs
to constantly account for unintended changes. They very much complicate par-
allelization at any level. To counter this problem, we have designed SootUp’s
Jimple IR to be immutable by default. This assures that there are no accidental
modifications and that values can be safely shared and cached.

1 class Body {

2 ...

3
4 Body withStmts(List<Stmt> stmts) {

5 return new Body(stmts);

6 }

7 }

Listing 1.1. Modifying a Method Body via Withers

To ensure immutability we have slightly adjusted the API as well. Many
classes do not have setters anymore, they have withers instead. Withers still
allow modifications via new object copies with modified properties. Listing 1.1,
for instance, shows how one can still modify the statements of a method body.

2.6 Changes to Jimple

Originally, Jimple was designed to be an IR for program optimization to fit
Soot’s primary use case. Since the purpose of SootUp has been shifted to-
wards program analysis instead of optimization, we adjusted the Jimple IR to-
wards this purpose. For efficiency reasons, a Java compiler compiles any switch
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statement to either a tableswitch or a lookupswitch bytecode instruction.
Since the distinction is needed to transform the optimized Jimple back to byte-
code, Jimple also made a distinction between tableswitch and lookupswitch

statements. However, virtually all program analyses will treat both kinds of
statements identically. Because of this, in SootUp both statements have been
merged into a single switch statement, simplifying analysis implementations.

Another novelty in SootUp’s Jimple is the added support for language
extensibility. SootUp is designed to be an analysis framework that not just
supports Java, but also other programming languages as well. To allow for this
multi-language support, a basic Jimple IR has been implemented in a generic
way that allows for easy extension with language-specific features. For the Java
implementation, we extended this basic Jimple IR with import statements and
annotations, two features that are highly specific to the Java language. Anno-
tations are supported by extending Jimple’s class type definition. Just like in
Java source code, import statements improve the readability of Java-Jimple
statements. Java-Jimple now allows referring to simple class names by defining
their fully qualified names as imports. Likewise, basic Jimple can be extended
to support features specific to other languages, e.g. JavaScript or Python.

3 Demonstration

In Section 2.3, we provided a glimpse of the new API. In this section, we demon-
strate the new API with a set of most common use cases.

3.1 Setup

The code snippet in Listing 1.2 shows the starting point in SootUp to build
an analysis project. The project builder requires two inputs: (1) the language of
code to be analyzed and its version, as SootUp supports multiple languages; (2)
the location of the analysis target. In this example, we are setting the analysis
language as Java with version 8 and adding a Java classpath analysis input loca-
tion that points to the analysis target. Note that one can add multiple analysis
input locations to the project builder. The Java bytecode frontend accepts any
of the Java archive formats (JAR or WAR), Android packages (APK), ZIPs or
individual .class files. The Java source and the Jimple frontends accept .java
and .jimple files respectively. To resolve a given class, the view will inspect all
of the given analysis input locations.

1 JavaLanguage language = new JavaLanguage(8);

2 JavaProject project = JavaProject.builder(language)

3 .addInputLocation(new JavaClassPathAnalysisInputLocation("/path"))

4 .build();

5 JavaView view = project.createView();

Listing 1.2. The creation of a view in SootUp
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3.2 Obtaining a Method Body

Assume the target code example in Listing 1.3. Following the API usage in Sec-
tion 2.3, next we need to obtain a reference to the target class. To do so, as shown
in Listing 1.4, we get the IdentifierFactory from the view at line 6. We obtain
the target class type at line 7 and likewise the target method’s signature at line
8. A class is rather straightforward to identify, i.e. with a string corresponding
to its fully qualified name, e.g. "org.example.Main" in this example.

package org.example;

public class Main {

void run(String[] args) {

...

}

}

Listing 1.3. Target code example

Identifying methods requires a
bit more information, as one needs
to specify its containing class type,
name, return type and parameter list
to uniquely identify it. In this exam-
ple, we use the target class type (ct)
that we have created, set the name as
"run" and return type as "void". It
is important to refer to any class type
with its fully qualified name. For in-
stance, while in Java it suffices to write String[] args to define the parameters
as a string array, SootUp needs the definition as java.lang.String[].

6 IdentifierFactory factory = view.getIdentifierFactory();

7 ClassType ct = factory.getClassType("org.example.Main");

8 MethodSignature mSig = factory.getMethodSignature(

9 ct, "run", "void", Collections.singletonList("java.lang.String[]"));

Listing 1.4. Definition of a class type and a method signature using SootUp

The method signature that we created (mSig) can now be used to query the
actual method object from the view. This is shown at line 10 in Listing 1.5. As
the new API follows the modern Java best practices, view.getMethod() returns
an optional, at line 11, we therefore test this optional for its presence and obtain
the methods body. At line 12, we output all the statements of the method.

10 view.getMethod(mSig)

11 .ifPresent(method ->method.getBody()

12 .getStmts().forEach(System.out::println));

Listing 1.5. Output all statements in a method body using SootUp

3.3 Call Graph Generation

A call graph models the calls between the methods of a target program, which
makes it an essential data structure when performing interprocedural program
analyses. SootUp’s new call graph framework is based on a generic notion of
a CallGraphAlgorithm, which can be extended by specific call graph algorithm
implementations. The call graph algorithms only need to specify how they resolve
a call. Resolving can be based on the static class hierarchy (e.g. CHA [7], RTA [2])
or based on sophisticated pointer analyses [16].
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13 CallGraphAlgorithm cha = new ClassHierarchyAnalysisAlgorithm(view);

14 CallGraph cg = cha.initialize(Collections.singletonList(mSig));

15 cg.containsMethod(anotherMethod)

16 cg.callsFrom(mSig)

Listing 1.6. Call graph generation using SootUp

Listing 1.6 shows an example of call graph generation using the new API.
Since the view maintains all the classes and methods, it needs to be passed to the
call graph algorithm, e.g. the ClassHierarchyAnalysisAlgorithm at line 13.
The call graph algorithm is initialized at line 4, by specifying the entry method,
which returns a CallGraph object. The call graph can be queried for method
reachability, e.g. at line 14, or can be iterated by retrieving the calls from the
entry method, e.g. at line 15.

3.4 Body Interceptors

Body interceptors in SootUp replace the concept of transformers in Soot.
They essentially allow modifying method bodies, for instance, to add, remove
or replace statements. As with the other objects, methods are immutable by
default. Therefore, in SootUp any modifications to the method body must be
performed during the body-building phase.

1 ClassLoadingOptions clo = new ClassLoadingOptions() {

2 @Override

3 public List < BodyInterceptor > getBodyInterceptors() {

4 return Collections.singletonList(new DeadAssignmentEliminator());

5 }

6 };

7 JavaView view = project.createView(analysisInputLocation -> clo);

Listing 1.7. Specifying Body Interceptors

Listing 1.7 shows an example of specifying a body interceptor. In this example
the DeadAssignmentEliminator is specified. The body interceptors must be
defined as part of the class loading options, as they are applied during class
loading. The options are passed during the view creation.

4 Tool Support

Soot-based tools can be upgraded to use SootUp instead, however, depending
on their implementation, the upgrading effort may vary. We next present the
tools that SootUp currently supports and provides as submodules. We also
suggest the roadmap for Soot-based tools for switching to SootUp.
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4.1 Heros

Heros [4] enables defining interprocedural dataflow analysis using the IFDS
(interprocedural, finite, distributive subset) [23] and IDE (inter-procedural dis-
tributive environments) [24] conceptual frameworks. Both frameworks reduce
dataflow analysis problems to graph reachability. While IDE well suits the anal-
ysis problems with large domains (such as typestate or constant propagation
analysis), IFDS is the primary choice for reachability analyses with a small do-
main (e.g. taint analysis).

1 JimpleBasedInterproceduralCFG icfg =

2 new JimpleBasedInterproceduralCFG(view, entryMethod);

3
4 IFDSTaintAnalysisProblem problem =

5 new IFDSTaintAnalysisProblem(icfg, entryMethod);

6
7 JimpleIFDSSolver<?, InterproceduralCFG<Stmt, SootMethod>> solver =

8 new JimpleIFDSSolver(problem);

9
10 solver.solve();

Listing 1.8. IFDS analysis using Heros

SootUp provides the Heros framework within its analysis submodule. List-
ing 1.8 shows an example on running an IFDS analysis using Heros. SootUp
implements Heros’ InterproceduralCFG interface with the Jimple-specific
JimpleBasedInterproceduralCFG. To instantiate it, the client needs to pass
the view and an entry method as shown at line 1. Heros defines IFDS problems
as an abstract class with DefaultIFDSTabulationProblem, this is extended by
DefaultJimpleIFDSTabulationProblem in SootUp. However, the clients still
need to define their custom IFDS analyses with problem-specific lattices, flow-
functions and merge operators. An example of a basic IFDS-based taint analysis
problem is available in SootUp, which is instantiated at line 4. SootUp ex-
tends Heros’ generic IFDSSolver with the JimpleIFDSSolver by concretizing
it with Stmt (equivalent to Unit in Soot) and SootMethod.

4.2 Qilin

Pointer information is an integral part of precise program analyses. Soot’s
pointer analysis frameworks, Spark [16] and its context-sensitive alternative
Paddle [17], have been popular in academia, as they provide a solid ground
for researching novel algorithms. As we observe, however, the research trend is
moving towards more sophisticated approaches with increased pointer analysis
precision. For instance, context-sensitivity can be applied selectively rather than
uniformly across the whole program [18].

Qilin [11] is a state-of-the-art flow-insensitive Java pointer analysis frame-
work that was recently designed for supporting fine-grained selective context
sensitivity while subsuming existing traditional method-level context sensitiv-
ity as a special case. Since Qilin is fully written in Java and operates on



12 Authors Suppressed Due to Excessive Length

the Jimple IR of Soot, we were able to seamlessly incorporate Qilin into
SootUp as a submodule with only minor engineering efforts. Qilin supports
a rich set of pointer analyses such as Andersen’s context-insensitive analysis as
implemented in Spark [16], k-limiting callsite-sensitive analysis [26], k-limiting
object-sensitive analysis [21,27], and other recent advancements in pointer anal-
ysis. By providing Qilin as a SootUp submodule, we aim to foster comparative
research using a broader set of pointer analysis algorithms.

1 PTAPattern ptaPattern = new PTAPattern("2o");

2 Collection entries = Collections.singleton(mainSig);

3 PTA pta = PTAFactory.createPTA(ptaPattern, view, entries);

4 pta.run();

5 CallGraph cg = pta.getCallGraph();

Listing 1.9. Call graph generation using a pointer analysis in Qilin

Listing 1.9 gives an example of 2-object sensitive pointer analysis using Qilin.
In lines 1 and 2 the flavor of pointer analysis is specified and the entry method
is set. In line 3 an instance of 2-object sensitive analysis is created which is
subsequently executed in line 4. As the pointer analysis in Qilin supports on-
the-fly call graph construction, the resulting call graph is retrieved in line 5.
In addition, pointer analysis in Qilin provides the APIs reachingObjects, for
computing the points-to set of any variable and mayAlias, for checking whether
two variables are aliases.

4.3 Roadmap for Other Soot-based Tools

SootUp is not a drop-in replacement for Soot. It is essentially a complete
rewrite with a new architecture and API. We therefore primarily recommend
SootUp to be used for new projects. However, existing tools that are based on
Soot can be upgraded to SootUp with some effort. The SootUp team has
been working on upgrading some Soot-based tools to SootUp. So far, we see
that the roadmap, and thus the effort, for a specific tool to upgrade to SootUp
will differ heavily based on how it is implemented. We have been seeing three
recurring patterns: (1) generic tools that do not directly depend on Soot, (2)
tools that depend on Soot but work with their own domain objects, (3) tools
that depend on Soot and work directly with Soot objects.

Generic tools can swiftly be upgraded to SootUp. For instance, the API
of the Heros solver provides interfaces based on Java generics. Its interfaces
can be extended with concrete tool-specific objects. The only requirement for
SootUp to use the IFDS solver was to extend necessary interfaces by providing
SootUp-specific objects.

Upgrading tools that use their own domain objects to SootUp is also simple.
For instance, Boomerang [28] and SparseBoomerang [14], state-of-the-art
demand-driven pointer analysis frameworks, implement their core functionality
within their own domain objects that correspond to classes, methods and state-
ments. These tools require SootUp’s objects to be converted to their domain
objects via implementing an adapter.
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Upgrading tools that work directly with Soot objects is a more complex task.
FlowDroid [1], a popular Android information flow analysis tool, is highly in-
tertwined with Soot. It is hard to determine where exactly the boundaries of
FlowDroid are and how to separate it from Soot. Therefore, at this point, we
anticipate that FlowDroid and tools of similar nature need a major rewrite
to upgrade to SootUp. Nonetheless, we are considering upgrading even Flow-
Droid to SootUp in the future.

5 Development

We next explain SootUp’s development process, and how one can extend or
contribute to SootUp.

5.1 SootUp’s Development Process

We have incepted SootUp as a greenfield project. This choice not only granted
us more freedom to restructure its architecture but also to employ a more mod-
ern software development process. Our new development process centers around
continuous quality assurance. Soot lacked proper test coverage, which compli-
cated adding new features or any kind of nontrivial refactoring. To overcome
this, we made testing an integral part of SootUp from the very beginning.
SootUp is loaded with exhaustive unit and regression tests. We continuously
observe its test coverage and enforce newly added code to maintain the same
level of coverage. To ensure that no new feature breaks or unintendedly changes
SootUp’s behavior, tests are executed for every new commit to SootUp’s code
repository through a continuous integration pipeline.

We seek to make SootUp more accessible to everyone. Our focus on an intu-
itive API design, as we explained in Section 2.3, is the first step in this direction.
Further, we prioritize documentation and make it part of the development pro-
cess. Our public-facing API elements are required to have Javadoc. Yet, we have
learned, considering the questions in Soot’s issue tracker, that Javadoc alone is
not enough. We thus maintain a documentation page3 to elaborate on some of
the main concepts of SootUp’s usage and provide more insight. To make the
documentation beginner-friendly, we demonstrate the most common use cases
with supporting code examples. From experience, we know that documentation
tends to fall behind the most recent development state. To prevent this, we
maintain the example code as part of SootUp’s code repository. By doing so
we ensure that the example code always compiles and functions with the most
recent state.

SootUp is currently published at Maven Central. We have announced the
first release (v1.0.0) in December 2022. Since then, we have been frequently
releasing new features and bug fixes, the most recent version at the time of writ-
ing is v1.1.2, published in June 2023. While, due to existing tool dependencies,

3 https://soot-oss.github.io/SootUp/

https://soot-oss.github.io/SootUp/
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Soot and SootUp will coexist for a while, the bulk of our maintenance efforts
will henceforth be directed toward SootUp rather than Soot.

5.2 Extending and Contributing to SootUp

Concerning community engagement, SootUp will follow in the footsteps of
Soot. While SootUp’s development is currently still carried by Paderborn Uni-
versity, we are open for others to join the team. The main motivation behind our
development efforts until the first release was to realize the design decisions laid
out in Section 2. Since the first release, we have been focusing more on commu-
nity feedback, such as bug reports and feature requests. Just like its predecessor,
we expect SootUp to be shaped around the needs and contributions of the re-
search community. We are eager to incorporate external contributions and very
much welcome feature and pull requests. Repeat contributors may become core
development team members with full commit rights.

To maintain an active community, we set up a discussion board on GitHub.
This allows the community to participate in Q&As, suggest new ideas or simply
discuss in an informal setting. SootUp is open-sourced with a GNU General
Lesser Public License v2.1 (LGPL-2.1) [10]. It allows SootUp to be modified as
long as the modifications are stated and licensed under the same license.

6 Future Work

SootUp is set to be the successor of the old Soot framework. Soot has been
developed and improved for more than 20 years, so there are still multiple analy-
sis utilities that need to be adapted to SootUp. Furthermore, we aim to keep up
with advancements in the field of static program analysis and implement support
for better callgraph construction approaches and more precise pointer-analysis
techniques in SootUp as they are developed.

Being able to analyze Android applications was one of the main reasons for
Soot’s popularity. SootUp currently allows one to analyze Android applica-
tions with the help of dex2jar.4 This is an interim solution, as dex2jar is no
longer actively maintained. In the meantime, we are working on a more robust
solution based on Dexpler [3].

SootUp was designed with extensibility for other programming languages
in mind. To allow for cross-boundary program analyses, we aim to implement
new frontends for other languages. We especially aim at implementing a Python
and a JavaScript frontend, due to the popularity of these languages.

Another goal for SootUp is to provide a means to enable the analysis of
partial programs. To process an uncompiled Java source code project using Soot
or SootUp, the whole code base of the project, alongside all its dependencies,
needs to be available either during compilation or during processing with the
source code frontend. However, in some scenarios only part of the code base is

4 https://github.com/pxb1988/dex2jar

https://github.com/pxb1988/dex2jar
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available. In the future, we aim to provide support for processing such partial
programs. By being able to generate Jimple from only partially available source
code and substituting the missing information with either data that can be
inferred from whatever is available of the code base or providing a means to
additionally specify missing parts.

In the future, we plan to also perform more evaluations in regards to SootUp.
An API design that is as intuitive as possible for its users was one of the primary
considerations when designing SootUp. To validate the API design, we plan
to perform user studies with various types of user groups like researchers and
software developers. Furthermore, we plan to benchmark SootUp’s performance
and compare it against other analysis frameworks and especially its predecessor.

7 Related Work

Apart from Soot, there are various research-oriented static analysis frameworks.
The most notable ones for Java are WALA [31], Doop [5] and OPAL [9]. WALA
enables analyzing multiple programming languages such as Java, Javascript, and
recently also Python [8]. It focuses on efficient static analysis by using specialized
data structures. WALA’s IR is close to JVM bytecode, but in contrast, it is based
on SSA (static single assignment). Instead of operand stacks, it uses symbolic
registers. SootUp is currently integrated with WALA’s source code frontend,
which enables SootUp to support source code in the same capacity as WALA
does. Doop was originally developed as a pointer analysis framework. It enables
defining static analyses declaratively and uses a Datalog solver. Doop’s IR is also
based on Jimple. It could probably be upgraded to SootUp with minor effort.
OPAL provides highly configurable static analysis using abstract interpretation.
Another notable static analysis framework is PhASAR [25], a framework that
enables static analysis for C and C++ applications through the LLVM IR.

8 Conclusion

We have presented SootUp, a complete overhaul of the popular Soot opti-
mization and analysis framework for Java. SootUp shifts the purpose from
optimization to static code analysis and fully modernizes the original Soot im-
plementation. SootUp implements all the lessons learned from the last 20+
years of development and usage of the original Soot framework. It comprises
many improvements like a new user-centric API, a fully parallelizable archi-
tecture and an new variant of the Jimple intermediate representation offering
extensibility for multi-language support. With all these changes and improve-
ments in place, SootUp aims to be a worthy successor of the good old Soot
framework and to enable the implementation of modern Java code analyses.

Acknowledgements. The development of SootUp was supported by the Re-
search Software Sustainability funding line of German Research Foundation
(DFG), and the Heinz Nixdorf Institute (HNI).
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