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Abstract—Self-stabilizing overlay networks have the advantage
of being able to recover from illegal states and faults. However,
the majority of these networks cannot give any guarantees on
their functionality while the recovery process is going on. We are
especially interested in searchability, i.e., the functionality that
search messages for a specific node are answered successfully if
a node exists in the network. In this paper we investigate overlay
networks that ensure the maintenance of monotonic searchability
while the self-stabilization is going on. More precisely, once a
search message from node u to another node v is successfully
delivered, all future search messages from u to v succeed as well.
We extend the existing research by focusing on skip graphs and
present a solution for two scenarios: (i) the goal topology is a
super graph of the perfect skip graph and (ii) the goal topology
is exactly the perfect skip graph.

Index Terms—Overlay networks, self-stabilization, search

I. INTRODUCTION

In this paper, we continue the research started in [1] and
investigate protocols for self-stabilizing overlay networks that
guarantee the monotonic preservation of a characteristic that is
called searchability. This property captures the idea that once a
search message from a node u to another node v is successfully
delivered, all future search messages from u to v succeed
as well. Searching is not only one of the most fundamental
tasks in overlay networks, but our notion of searchability also
captures the desired feature that we can successfully route
messages to a target node once a single search message has
successfully reached the target, i.e., we preserve routing paths
while stabilization of the overlay topology is still in progress.
Conversely, if a network does not maintain searchability, it
cannot maintain simple functionalities while stabilizing mes-
sages are not reaching their desired target nodes.

The first results for monotonic searchability focus on spe-
cific simple topologies (e.g., the line in [1]). The follow-
up paper [2] presents a universal approach that can be used
to transform existing self-stabilizing protocols (that fulfill
certain requirements) in order to get a protocol that maintains
monotonic searchability. The main drawback of this universal
approach is the fact that protocols for certain topologies cannot
be transformed since they violate one of the requirements
needed for the transformation. For example, protocols which
use random decisions during topology construction (e.g., the
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small-world protocol [3]) cannot be transformed by the generic
approach. Another wide class of topologies which violate the
requirements of the universal approach are graphs that make
heavy use of fast routing paths by having shortcuts that change
over time in the construction phase, e.g., the chord network [4]
or skip graphs [5]. We bridge the latter gap by solving the
problem of monotonic searchability for a topology that uses
shortcut edges on top of a list in order to achieve a logarithmic
diameter: the (perfect) skip graph [6].

We investigate monotonic searchability for the perfect skip
graph in two scenarios: (i) classical self-stabilization as intro-
duced by Dijkstra [7] (i.e., the desired final topology has to be
the skip graph) and (ii) relaxed self-stabilization (i.e., the skip
graph has to be a subtopology of the final topology). From a
self-stabilization point of view the second scenario is easier to
achieve than the first, i.e., protocols and their proofs are easier
to design. However, we can achieve monotonic searchability
in both cases. To the best of our knowledge, even though the
notion of relaxed self-stabilization is not new, in general we
are the first to exploit this idea in topological self-stabilization.
Our protocol for the classical scenario shows that monotonic
searchability can be maintained even in cases where the
generic approach is not applicable (since its requirements are
not fulfilled). Moreover, our protocol for the relaxed scenario
shows that the cost of maintaining monotonic searchability can
be mitigated by allowing more edges in the final topology.
More precisely, the classical scenario incurs a lot of overhead
and requires an elaborate and slow procedure to search for
nodes, whereas the relaxed scenario achieves searchability
more efficiently (in terms of overhead, complexity of the
protocols as well as the proofs). Additionally, simulations
show that the constructed topology in the relaxed scenario
does not generate a lot of topology overhead, i.e., the average
degree growth is polylogarithmic. Due to space constraints,
we focus on our result in the relaxed scenario and describe
the changes for the classical scenario. A detailed version of
this paper can be found in [8]

A. Model

We model a distributed system as a directed graph G =
(V,E). Each peer is represented by a node v ∈ V . Each
node v ∈ V has a unique reference and a unique identifier
v.id ∈ N (called ID). A node v is on the left (right) side
of a node u if v.id < u.id (v.id > u.id). For two nodes
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u and v we define the identifier distance (or short distance)
d(u.id, v.id) as the number of nodes in the system whose IDs
are in the interval (u.id, v.id] if u.id < v.id (or (v.id, u.id]
if u.id > v.id). Additionally, each node v maintains local
protocol-based variables and has a channel v.ch, which is a
system-based variable that contains incoming messages. The
message capacity of a channel is unbounded and messages
never get lost. If a node u has the reference of some other node
v, u can send a message m to v by putting m into v.ch. When
a node u processes a message m, then m is removed from
u.ch. We assume for simplicity that there are no references
to non-existing nodes in our system. Failure detectors would
solve this scenario, but this is out of scope for this paper,
since the problem of guaranteeing monotonic searchability is
already non-trivial if all references point to existing nodes.

We distinguish between two different types of actions:
The first type is used for standard procedures and has the
form 〈label〉(〈parameters〉) : 〈command〉, where label is
the name of that action, parameters defines the set of
parameters and command defines the statements that are
executed when calling that action. It may be called locally
or remotely, i.e., every message that is sent to a node has
the form 〈label〉(〈parameters〉). The second action type has
the form 〈label〉 : (〈guard〉) −→ 〈command〉, where label
and command are defined as above and guard is a predicate
over local variables. An action for some node u may only
be executed if its guard is true. An action whose guard is
simply true is called TIMEOUT action, which is thus called
periodically.

We define the system state to be an assignment of values
to every node’s variables and messages to each channel. A
computation is an infinite sequence of system states, where
the state si+1 can be reached from its previous state si by
executing an action that is enabled in si. We call the first state
of a given computation the initial state. Given a computation
s1, s2, s3, . . ., a computation suffix is a subsequence of the
computation that is obtained by removing s1 and finitely many
subsequent states. We assume fair message receipt, i.e., every
message of the form 〈label〉(〈parameters〉) that is contained
in some channel, is eventually processed. Furthermore, we
assume weakly fair action execution, meaning that if an action
is enabled in all but finitely many states of a computation, then
this action is executed infinitely often (the TIMEOUT action
as an example for this). We place no bounds on message
propagation delay or relative node execution speed, i.e., we
allow fully asynchronous computations and non-FIFO message
delivery. Our protocol does not manipulate node identifiers and
thus only operates on them in compare-store-send mode, i.e.,
we are only allowed to compare node IDs to each other, store
them in a node’s local memory or send them in a message.

Concerning G, there is a directed edge (u, v) ∈ E, if u
stores a reference to v in its local memory or if there is a
message in u.ch carrying the reference of v. In the former case,
we call that edge explicit and in the latter case we call that
edge implicit. We use Ge = (V,Ee) to denote the subgraph of
G that only contains explicit edges. In order for our distributed
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Figure 1. A perfect skip graph with 9 nodes and maxLevel = 3

algorithms to work, we require the directed graph G = (V,E)
to stay weakly connected throughout a computation. A directed
graph G = (V,E) is weakly connected, if the undirected
version of G, namely G′ = (V,E′) is connected, i.e., for
every two nodes u, v ∈ V there is a path from u to v in G′.
Once there are multiple weakly connected components in G,
these components cannot be connected to each other anymore
in our scenario [9].

B. Problem Statement

We are interested in the formation and maintenance of a
perfect skip graph topology for the nodes in the distributed
system. A perfect skip graph is a deterministic version of skip
graph [6] in which each node has a neighbor on level i if
the distance between these two nodes is equal to 2i. Each
node can have at most blog (n− 1)c + 1 levels (We denote
blog (n− 1)c with maxLevel), where n is the total number
of nodes. An example is illustrated in Figure 1.

We say the system is in a legitimate (stable) state, if the
nodes and the explicit edges form the perfect skip graph and
there are no corrupted messages in the system. An arbitrary
message m is called corrupted if the existence of m violates a
predefined message invariant (see proof of Theorem 2 for de-
tails). Intuitively speaking a message is corrupted, if it violates
certain properties that capture the essence of searchability in
our topology. A system state s is called admissible if there are
no corrupted messages in s.

A protocol is self-stabilizing if it satisfies the following two
properties: (i) Convergence: Starting from an arbitrary system
state, the protocol is guaranteed to arrive at a legitimate state
and (ii) Closure: Starting from a legitimate state, the protocol
remains in legitimate states thereafter.

Besides classical topological self-stabilization we also in-
vestigate a weaker form stabilization that we call relaxed self-
stabilization. Intuitively, this means that the topology of the
network in a legitimate state is allowed to be a supertopology
of the desired topology, i.e., in legitimate states Ge contains
at least the edges of the perfect skip graph.

An important concept in overlay networks is searching,
since nodes have to initiate search requests to interact
with each other. A search request can be interpreted as a
SEARCH(u, destID) message where u is the initiating node
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and destID is the ID of the node we are searching for,
which will be routed along Ge. A self-stabilizing protocol
satisfies monotonic searchability according to some search
protocol R if it holds for any pair of nodes u and w that
once a SEARCH(u, w.id) request initiated by u at time t
succeeds, any SEARCH(u, w.id) requests initiated by u at time
t′ > t will succeed. A protocol admissibly satisfies mono-
tonic searchability, if (i) it satisfies monotonic searchability
in computations in which every state is admissible and (ii)
starting from any initial state, there is a computation suffix
in which every state is admissible. Since all known results in
the area consider protocols that admissibly satisfy monotonic
searchability, we drop the word admissibly to enhance the
readability of statements.

C. Related Work

The idea of self-stabilization was introduced by E.W. Di-
jkstra in 1974 [7], in which he investigated the problem of
self-stabilization in a token ring. In order to recover certain
network topologies from any weakly connected state, re-
searchers started with simple line and ring networks (e.g., [10],
[11]). Over the years more and more topologies were con-
sidered, ranging from skip lists and skip graphs [9], [5], to
expanders [12], and small-world graphs [3]. Also a universal
algorithm for topological self-stabilization is known [13].

In the last 20 years many approaches have been investigated
that focus on maintaining safety properties during the conver-
gence phase (of self-stabilization), e.g., snap-stabilization [14],
[15], super-stabilization [16], safe convergence [17] and self-
stabilization with service guarantee [18]. Closest to our work
is the notion of monotonic convergence by Yamauchi and
Tixeuil [19]. A self-stabilizing protocol is monotonically con-
verging if every change done by a node p makes the system
approach a legitimate state and if every node changes its output
only once. The authors investigate monotonically converging
protocols for different classical distributed problems (e.g.,
leader election and vertex coloring) and focus on the amount
of non-local information that is needed to solve them.

Research on monotonic searchability was initiated in [1],
in which the authors proved that it is impossible to satisfy
monotonic searchability if corrupted messages are present. In
addition, they presented a self-stabilizing protocol for the line
that is able to satisfy monotonic searchability. This work is
complemented in the subsequent paper of the same authors [2]
in which they investigate a universal approach for monotonic
searchability. The base for their approach is a set of primitives
for manipulating overlay edges that allows maintenance of
searchability, a transformation technique such that existing
self-stabilizing protocols use these primitives only and a
generic routing protocol. However, adapting their protocol to
specific topologies comes at the cost of convergence times and
additional message overhead. A very recent publication inves-
tigates monotonic searchability for high-dimensional networks
based on a quad-tree construction [20].

D. Our Contribution

Our major contributions are as follows:
1) We propose a novel self-stabilizing protocol MULTI-

SKIPGRAPH and a corresponding search strategy that
greedily makes use of shortcut edges in the topology
(see Section II). MULTISKIPGRAPH is a solution for
the relaxed self-stabilization problem for the perfect skip
graph topology.

2) In addition, we show how to extend the MULTISKIP-
GRAPH protocol to solve the classic self-stabilization
problem for the perfect skip graph topology: the MUL-
TISKIPGRAPH* protocol (see Section IV). To maintain
monotonic searchability, we present a new search pro-
tocol called SLOWGREEDYSEARCH, which combines a
greedy forwarding strategy and a backtracking algorithm.
To the best of our knowledge, MULTISKIPGRAPH* is the
first self-stabilizing and monotonic searchability satisfy-
ing protocol for the perfect skip graph.

3) Finally, we compare our two approaches experimentally
in simulations (see Section V).

We do have to note that all present protocols do not
consider node departures from an overlay network. There is
a different line of work that considers this self-stabilizing
scenario (e.g., [21], [22]). It was shown in [1] that it is possible
to construct a self-stabilizing algorithm that (i) stabilizes to the
line topology, (ii) handles node departures while maintaining
connectivity and (iii) maintains monotonic searchability. How-
ever, even for such a simple topology the protocols are hard
to follow (since they aim to achieve a multitude of goals)
and do not provide many algorithmic insights (except for the
fact that such a combination is indeed possible). Thus, we
opted for a version of the problem which puts its focus on the
maintenance of searchability and leave the combination with
a corresponding node departure protocol for future research.

The rest of the paper is structured as follows: In Section II
we present our MULTISKIPGRAPH protocol together with
the corresponding search protocol. We prove the correspond-
ing correctness (in terms of self-stabilization and monotonic
searchabilty) in Section III. Afterwards we sketch the nec-
essary changes to transform MULTISKIPGRAPH into MUL-
TISKIPGRAPH* in Section IV. We conclude the paper by
evaluating both protocols experimentally in Section V.

II. THE MULTISKIPGRAPH PROTOCOL

We now introduce our MULTISKIPGRAPH protocol pre-
sented in Algorithm 1 that solves the relaxed self-stabilization
and monotonic searchability problems for perfect skip graphs.
Since higher levels of a perfect skip graph are built on the top
of lower levels, it is natural to stabilize the level-0 list first.

To stabilize the level-0 list, we reuse the classic linearization
protocol of [23], in which each node only keeps the reference
of a single left and right neighbor. If a node u with a
current right neighbor w receives a reference of node v with
u.id < v.id, node u either saves v as its new right neighbor
if v is closer to u than w and delegates w to v, or v is
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Variables and Constants
1 id: the unique identifier of the current node
2 self : the reference of the current node
3 maxLevel: the predefined maximal level of the perfect skip graph
4 LeftLevel[i]: the left level-i neighbor
5 RightLevel[i]: the right level-i neighbor
6 LeftUnknown: the set of left neighbors which are not assigned to any level
7 RightUnknown: the set of right neighbors which are not assigned to any level
8 Left: the set of all left neighbors, i.e., the union of LeftLevel[i]s and

LeftUnknown
9 Right: the set of all right neighbors, i.e., the union of RightLevel[i]s and

RightUnknown
10 v.level: the level of a neighbor v stored by the current node
11 Waiting: the set to store destID of each SEARCH(self , destID)

message initiated by the current node
12 WaitingFor[destID]: the set of all SEARCH(self , destID) messages

initiated by the current node
13 seq: the sequence number counter for search messages
14 seqs[destID]: it stores the sequence number of the latest initiated

SEARCH(self , destID) messages by the current node

Action TIMEOUT()
// The self-stabilizing part;

// Let v1.id < v2.id < ... < vn.id;
1 for i← 1 to n− 1 do
2 for vi, vi+1 ∈ Left: send INTRODUCE(vi) to vi+1;
// Let w1.id < w2.id < ... < wm.id;

3 for i← 1 to m− 1 do
4 for wi, wi+1 ∈ Right: send INTRODUCE(wi+1) to wi;
5 send INTRODUCE(self ) to vn;
6 send INTRODUCE(self ) to w1;
7 for i← 0 to maxLevel− 1 do
8 if LeftLevel[i] 6= ⊥ ∧ RightLevel[i] 6= ⊥ then
9 send INTROLEVELNODE(LeftLevel[i], i+ 1) to RightLevel[i];

10 send INTROLEVELNODE(RightLevel[i], i+ 1) to LeftLevel[i];
// The HybridSearch part;

11 for destID ∈Waiting do
12 send GREEDYPROBE(self , destID, seq) to self ;
13 send GENERICPROBE(self , destID, {self}, seq) to self ;

Action INTRODUCE(v)
1 if v.id 6= id then
2 if v.id < id then
3 if LeftLevel[0] = ⊥ then
4 if v ∈ LeftUnknown then
5 LeftUnknown← LeftUnknown \ {v};
6 LeftLevel[0]← v;
7 else
8 w ← LeftLevel[0];
9 if v.id 6= w.id then

10 if v.id > w.id then
11 LeftUnknown← LeftUnknown ∪ {w};
12 if v ∈ LeftUnknown then
13 LeftUnknown← LeftUnknown \ {v};
14 LeftLevel[0]← v;
15 else
16 x← argmax {u.id|u.id < v.id ∧ u ∈ Left};
17 y ← argmin {u.id|u.id > v.id ∧ u ∈ Left};
18 send INTRODUCE(v) to x if x 6= ⊥;
19 send INTRODUCE(v) to y if y 6= ⊥;

20 else
// Analogous to the previous case.

Action INTROLEVELNODE(v, i)
1 if v.id 6= id then
2 if i > 0 then
3 doIntro ← false;
4 if v.id < id then
5 if Left 6= ∅ then
6 for j ← 0 to i-1 do
7 if LeftLevel[j] = ⊥ then
8 doIntro ← true;
9 break;

10 else
11 doIntro ← true;
12 if doIntro then
13 INTRODUCE(v);
14 else
15 w ← LeftLevel[i];
16 if w 6= ⊥ ∧ w 6= v then
17 LeftUnknown← LeftUnknown ∪ {w};
18 if v ∈ Left then
19 if v ∈ LeftUnknown then
20 LeftUnknown← LeftUnknown \ {v};
21 else
22 LeftLevel[v.level]← ⊥;
23 LeftLevel[i]← v;
24 else

// Analogous to the previous case.
25 else
26 INTRODUCE(v);

Action GREEDYPROBE(src, destID, seq)
1 if src 6∈ Left ∪ Right then
2 INTRODUCE(src);
3 if destID = id then
4 send PROBESUCCESS(destID, seq, self ) to src;
5 else
6 if destID < id then
7 if Left 6= ∅ then
8 v ← argmin {u.id|u ∈ Left ∧ u.id ≥ destID};
9 send GREEDYPROBE(src, destID, seq) to v;

10 else
11 if Right 6= ∅ then
12 v ← argmax {u.id|u ∈ Right ∧ u.id ≤ destID};
13 send GREEDYPROBE(src, destID, seq) to v;

Action GENERICPROBE(src, destID, Next, seq)
1 if src 6∈ Left ∪ Right then
2 INTRODUCE(src);
3 for ∀w ∈ Next ∧ w 6∈ Left ∪ Right do
4 INTRODUCE(w);
5 if destID = id then
6 send PROBESUCCESS(destID, seq, self ) to src;
7 else
8 Remove← {w|w ∈ Next ∧ d(w.id, destID) ≥ d(id, destID)};
9 Next← Next \Remove;

10 if destID < id then
11 Next← Next ∪ {w|w ∈ Left ∧ w.id ≥ destID};
12 else
13 Next← Next ∪ {w|w ∈ Right ∧ w.id ≤ destID};
14 if Next = ∅ then
15 send PROBEFAIL(destID, seq) to src;
16 else
17 v ← argmax {d(u.id, destID)|u ∈ Next};
18 send GENERICPROBE(src, destID, Next, seq) to v;

Algorithm 1: The MULTISKIPGRAPH protocol
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not saved by u but delegated to w. Here, delegation means
that a node reference is sent in a message to another node
and not kept in the local memory afterwards. However, it
was proven in [2] that this delegation hinders maintaining
monotonic searchability. Thus, in our protocol each node does
not remove the references of its neighbors when delegating,
but only marks them as unknown (i.e., it adds them into the
unknown sets LeftUnknown or RightUnknown). Neighbors of
a node u in an unknown set are those, for which u cannot
determine which level they belong to in the current state. All
local variables and constants are listed in Algorithm 1.

Searching works similarly to [1], whenever a node
u wants to initiate a search message, it calls the
INITIATENEWSEARCH(destID) function. In this function,
instead of sending a SEARCH(u, destID) message m directly,
node u stores m into u.WaitingFor[destID] and period-
ically initiates a probing process for m in the TIMEOUT()
action. Node u only sends m when it gets a positive answer
to a probe.

The TIMEOUT() action is called periodically and it is
divided into a self-stabilizing part and a HybridSearch part.
To build the level-0 list fast, each node introduces itself to
its closest neighbors and its left and right neighbors linearly
by sending INTRODUCE messages in the self-stabilizing part.
If a node u has a and b as neighbors on level i in a perfect
skip graph, then a and b should be neighbors on level i + 1.
Thus, each node sends INTROLEVELNODE messages with the
corresponding level number to its left and right neighbors on
each level (see Line 8-10). In the HybridSearch part, each
node initiates the HybridSearch probing process by sending the
messages GREEDYPROBE() and GENERICPROBE() to itself.

We now explain how INTRODUCE and INTROLEVELNODE
messages stabilize the perfect skip graph. Consider a node u
and a node v with v.id < u.id (the other case is analogous).
Whenever node u receives an INTRODUCE(v) message, the
action INTRODUCE(v) is triggered. In this action, node u
either keeps v locally or introduces it to its neighbors that
are closest to v. Node u keeps v locally, if u has no left level-
0 neighbor, or it is closer to v than its current left level-0
neighbor w. In the latter case, w is inserted into the unknown
set. INTROLEVELNODE(v, i) messages are used to stabilize
the higher levels. In action INTROLEVELNODE(v, i), higher
level edges will only be created when the lower level edges
have already been established (checks in Line 6-9). If all level-
j neighbors with j < i exist, the current node u sets v as its
new level-i neighbor and marks the old one as unknown if it
exists. If i ≤ 0 (can only happen in the initial state) or some
level-j neighbor with j < i does not exist, the action will be
handled as the INTRODUCE(v) action.

The GREEDYPROBE() messages are forwarded in a greedy
manner among nodes. Consider a node u that receives a
GREEDYPROBE(src, destID, seq) message with a node ref-
erence src, two numbers destID and seq. The corresponding
action works as follows: (i) to maintain the weak connectivity
to src, u calls INTRODUCE(src) at first and (ii) if u is the
target node, i.e., destID = u.id, a PROBESUCCESS(destID,

seq, u) message is sent to src as a positive answer. Otherwise,
u forwards the GREEDYPROBE(src, destID, seq) message to
its neighbor that is closest to the target node.

The GENERICPROBE() messages are forwarded in a pro-
gressive manner according to the generic search protocol
in [2]. Each GENERICPROBE() message has a set of nodes,
called Next, which contains the nodes this message will
visit in the future. Whenever a GENERICPROBE(src, destID,
Next, seq) message is at a node u with u.id < destID ( for
u.id > destID it is analogous), u first removes itself and
nodes with smaller IDs than itself from Next. Then it adds
all its right neighbors to Next and forwards this message to
a node with minimal ID in Next. If u is the target node,
a PROBESUCCESS(destID, seq, u) message is sent back to
src. If Next is empty, a PROBEFAIL(destID, seq) message
is sent. GENERICPROBE messages are used as a fallback for
cases, in which a path from src to u exists, but it cannot be
found greedily.

When a node u receives a PROBESUCCESS(destID, seq,
dest) message, it checks if seq is at least as big as the
locally stored sequence number for destID. If so, u sends
all SEARCH(u, destID) messages which are waiting in the
set WaitingFor[destID] to the target node dest. Otherwise,
it is a positive answer for the batch of already delivered or
discarded SEARCH(u, destID) messages and u only executes
INTRODUCE(dest) to preserve the weak connectivity. If u
receives a PROBEFAIL(destID, seq) message which indicates
the failed probe, it drops all waiting SEARCH(u, destID) mes-
sages. The pseudocode of INITIATENEWSEARCH, PROBE-
SUCCESS and PROBEFAIL are similar to the ones in [2].

III. PROOFS OF MULTISKIPGRAPH

Theorem 1 The MULTISKIPGRAPH protocol is a relaxed
self-stabilizing solution to the perfect skip graph topology.

The proof consists of Lemma 1, 2, 3 and 4.

Lemma 1 If a computation of MULTISKIPGRAPH starts from
a state in which G is weakly connected, then G remains weakly
connected in each subsequent state.

Proof: Consider arbitrary nodes u, v ∈ V s.t. there is
a path from u to v in G. If the path consists of explicit
edges only, then it will always exist, since no explicit edge
is removed in MULTISKIPGRAPH. If the path contains an
implicit edge (a, b), then there is a message in a.ch carrying
the reference of b. When a processes the message (regardless
of its type), in our protocol a either keeps b locally or
introduces it to one of its neighbors c, i.e., the implicit edge
(a, b) is either replaced by an explicit edge (a, b) or a path
(a, c), (c, b). Thus, the weak connectivity is always preserved.

We define the potential function of a node u for a level i as
φ(u, i) := d(u.id, pred(u, i).id) + d(u.id, succ(u, i).id), i.e.,
the identifier distance between the predecessor and successor
of node u on level i. If u has no predecessor (or successor)
on level i, d(u.id, pred(u, i).id) (or d(u.id, succ(u, i).id)) is
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replaced by a constant D which is bigger than the maximal
distance between two nodes in the line topology. The level-
i subgraph of a graph G = (V,E) is defined as Gi :=
(V,Ei), where Ei contains the level-i edges of all nodes.
The potential function of a level-i subgraph Gi is defined as
Φ(Gi) =

∑
u∈V φ(u, i). According to our protocol φ(u, 0)

never increases for any node u and neither does Φ(G0).
Obviously, Φ(G0) is minimal if the level-0 subgraph G0 is
the line topology. Thus, for Lemma 2 it is sufficient to show
that if Φ(G0) 6= Φmin(G0), Φ(G0) will decrease to Φmin(G0)
(the value of the line topology) in finite time. For convenience,
we denote Gt = (V,Et) as the directed graph at time t.

Lemma 2 Any computation of MULTISKIPGRAPH starting
from a state in which G is weakly connected contains a state
in which the level-0 subgraph G0 is the line topology.

Proof: We prove the statement by contradiction. Assume
there is a time t such that for all t′ > t: Φ(Gt′

0 ) = Φ(Gt
0) 6=

Φmin(G0), i.e., the level-0 subgraph Gt
0 = (V,Et

0) at time t
and afterwards is not the line topology. We define a connected
(line) component Ci := (Vi, Fi), s.t. Vi ⊆ V , Fi ⊆ Et

0

and Ci is the line topology over nodes in Vi. Decompose
Gt

0 into disjoint connected components C1, C2, ..., Ck, s.t.⋃
i∈{1,...,k} Vk = V and Vi ∩ Vj = ∅ for i 6= j. For j > i, the

nodes in Cj all have greater IDs than nodes in Ci. Figure 2
illustrates this decomposition. According to Lemma 1 Gt is
weakly connected, so there are edges between the connected
components. Consider two neighboring components Ci and
Cj with the property that ∃(u, v) ∈ Et : u ∈ Vi, v ∈ Vj or
vice-versa and i < j. If there are multiple edges with that
property, pick edge (u, v) such that d(u.id, v.id) is minimal.
W.l.o.g. that u ∈ Vi and v ∈ Vj . We consider the following
two cases of the edge (u, v):

• (u, v) is an explicit edge. According to our protocol
node u introduces itself to v periodically in TIMEOUT()
by sending INTRODUCE(u) messages. Under the fair
message receipt assumption node v will receive the
INTRODUCE(u) message in finite time. In the correspond-
ing INTRODUCE action, v will either add u as it’s new
level-0 neighbor or delegate it to its neighbor which
is closer to u. In the former case, φ(v, 0) decreases.
In the latter case, this INTRODUCE(u) message can
be delegated further until a node xm stops delegating
it. Consider the delegation path (x1, x2, ..., xm) of this
INTRODUCE(u) message with x1 = v, then it must
satisfy that (1) x1.id > x2.id > ... > xm.id >
u.id, (2) d(xi.id, xi+1.id) < d(v.id, u.id) holds for all

v1 v2 v3 v4 v5 vn−2 vn−1 vn

C1 C2 Ck

Figure 2. Disjoint connected components on level 0 (dashed edges are implicit
edges)

i = 1, ...,m − 1, and (3) this delegation path only
contains explicit edges. These properties imply that all
nodes on the delegation path must be in Cj , otherwise
it violates our assumption that d(u.id, v.id) is minimal
among all edges between Ci and Cj . Thus, xm is in
Cj and d(xm.id, u.id) < d(v.id, u.id). Node xm must
add u as its left level-0 neighbor when it receives the
INTRODUCE(u) message and φ(xm, 0) decreases. If it is
not the case, it means that xm has a left level-0 neighbor
w with d(xm.id, w.id) < d(xm.id, u.id) < d(v.id, u.id).
Such a node w can not be in Cj , since otherwise the
delegation path does not end in xm. Moreover, w can not
be in Ci since it violates the assumption that d(u.id, v.id)
is minimal, i.e., w does not exist.

• (u, v) is an implicit edge, i.e., there is a message m
in u.ch carrying the reference of v. When u processes
m, it will either add v as its right neighbor or treat
it as an INTRODUCE(v) message for all possible types
of m. In the former case, (u, v) becomes explicit and
φ(u, 0) decreases. In the latter case, when processing
INTRODUCE(v), node u either keeps v as it as its neigh-
bor or delegates it. This is analogous to the scenario in
which (u, v) is an explicit edge, i.e., a delegation path
(x1, x2, ..., xm) exists and φ(xm, 0) will decrease.

We have proven that there exists a node y such that φ(y, 0)
decreases. This implies that Φ(Gt′

0 ) will decrease, which is a
contradiction to our initial assumption.

Lemma 3 If a computation of MULTISKIPGRAPH contains
a state in which the level-0 subgraph G0 is the line topology,
then G0remains the line topology.

Proof: Since G0 is the line topology, Φ(G0) = Φmin(G0)
holds. According to our protocol Φ(G0) can not increase and
it can not decrease anymore once it reaches Φmin(G0). Thus,
it will always stay as the line topology.

Lemma 4 Any computation of MULTISKIPGRAPH starting
from a state in which G is weakly connected contains a
computation suffix in which Ge is a super graph of the perfect
skip graph topology.

Proof: It is sufficient to prove that there is a computation
suffix in which the level-i subgraph of Ge is the level-i
subgraph of the perfect skip graph, i.e., the level-i subgraph
is stable. We prove this by induction.
Basis: The case i = 0 is proven in Lemma 2.
Inductive step: i→ i+ 1 for i ∈ {0, ...,maxLevel − 1}.
Consider the state where level i is stable and an arbitrary
node u whose left level-i neighbor is v and right level-i
neighbor is w. In TIMEOUT(), node u introduces v and w
to each other by sending INTROLEVELNODE(v, i + 1) to
w and INTROLEVELNODE(w, i + 1) to v periodically. The
INTROLEVELNODE messages are only sent in TIMEOUT(),
i.e., once w and v are stable level-i neighbors of u, only node
u (and no other node) sends INTROLEVELNODE(v, i + 1)
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to w and INTROLEVELNODE(w, i + 1) to v. Under the fair
message receipt assumption, there will be a state s in which
all other INTROLEVELNODE messages in w.ch and v.ch for
level i + 1 which are not INTROLEVELNODE(v, i + 1) and
INTROLEVELNODE(w, i+1) are processed. Afterwards, node
w will only receive INTROLEVELNODE(v, i+ 1) and node v
will only get INTROLEVELNODE(w, i + 1) for level i + 1.
According to our protocol, node w will have v as its stable
left level-(i+1) neighbor and v will have w as its stable right
level-(i+ 1) neighbor. Since level-i is stable and φ(u, i) = 2i,
φ(u, i+ 1) = 2 ·φ(u, i) = 2i+1 must hold. Consider all nodes
on level i that have predecessor and successor like u, their
level-i neighbors will become stable level-i + 1 neighbors
analogously. In such state, the identifier distance between
neighboring nodes on level i + 1 is 2i+1, which satisfies the
property of the level-i+ 1 subgraph in the perfect skip graph.

Theorem 2 The MULTISKIPGRAPH protocol satisfies mono-
tonic searchability according to HybridSearch.

The proof of Theorem 2 consists of Lemma 6, 7, 8 and
9. Due to space constraints, omitted proofs can be found
in [8]. We define the reachable set of a node u towards a
target node w with w.id = destID as R(u, destID) :=
{u}∪{v ∈ V |There is a directed path Pv in Ge from node
u to node v s.t. for each explicit edge (a, b) in Pv it holds
that d(a.id, distID) > d(b.id, distID).}. The reachable set
of a set U towards a target node w with w.id = destID is
defined as R(U, destID) := ∪u∈UR(u, destID). Since no
explicit edges are removed in MULTISKIPGRAPH, i.e., the
reachability between every two nodes is always preserved, the
following lemma holds.

Lemma 5 For arbitrary nodes u and v, if v ∈ R(u, destID)
in state s, then v ∈ R(u, destID) holds in every state s′ > s.

We know that adding edges will not violate the mono-
tonic searchability and explicit edges are never removed in
MULTISKIPGRAPH, thus it is sufficient to consider only the
messages used in the HybridSearch part when checking if a
state is admissible. We define a system state as admissible if
the following message invariants for HybridSearch hold:

1. If there is a GREEDYPROBE(src, destID, seq) in u.ch,
then u ∈ R(src, destID).

2. If there is a GENERICPROBE(src, destID, Next, seq) in
u.ch, then
a. u ∈ Next and ∀v ∈ Next \ {u} : d(v.id, destID) ≤
d(u.id, destID);

b. R(Next, destID) ⊆ R(src, destID);
c. If a node w exists with w.id = destID and w 6∈
R(Next, destID), then for every admissible state
with src.seqs[destID] < seq it holds that w 6∈
R(src, destID).

3. If there is a PROBESUCCESS(destID, seq, dest) in u.ch,
then dest.id = destID and dest ∈ R(u, destID).

4. If there is a PROBEFAIL(destID, seq) in u.ch and a node
w with w.id = destID exists, then w 6∈ R(u, destID)
holds for every admissible state with u.seqs[destID] <
seq.

5. If there is a SEARCH(v, destID) in u.ch, then u.id =
destID and u ∈ R(v, destID).

Lemma 6 If a computation of MULTISKIPGRAPH contains
an admissible state, then every subsequent state is admissible.

Lemma 7 In every computation of MULTISKIPGRAPH, there
is an admissible state and after that all states are admissible.

Lemma 8 If there is a GENERICPROBE(src, destID, Next,
seq) message in u.ch with u.id < destID and there exists a
node w with w.id = destID and w ∈ R(u, destID), then a
GENERICPROBE(src, destID, Next′, seq) message will be
in w.ch eventually.

Lemma 9 The MULTISKIPGRAPH protocol guarantees
monotonic searchability according to HybridSearch in every
computation suffix starting in an admissible state.

Proof: We prove this lemma by contradiction. Consider
two SEARCH(u, destID) messages m and m′ created in
admissible states at time t and t′ with t < t′ s.t. m is delivered
successfully but m′ is not. Let seq1, seq2 be the sequence
numbers for m and m′. The sequence number increases
monotonically. Let w be the target node with w.id = destID.

If m′ is created when m is still in u.WaitingFor(destID),
then the protocol will handle both messages the same since
they belong to the same batch, i.e., m′ will be delivered
successfully as well. The assumption is violated.

If m′ is created when m is already sent by node u, then
seq2 ≥ seq1. Since m′ is not delivered successfully, there
are two possibilities: (1) u receives a PROBEFAIL(destID,
seq) with seq ≥ u.seqs[destID] ≥ seq2 or (2) u receives
no PROBESUCCESS(destID, seq, w) message with seq ≥
u.seqs[destID].

Case (1): The invariant of PROBEFAIL(destID, seq) holds
for every admissible state with u.seqs[destID] < seq, includ-
ing the state when m is delivered where the sequence number
is seq1 ≤ seq2, that is w 6∈ R(u, destID). This is contradic-
tory to the invariant of m which is w ∈ R(u, destID).

Case (2): m is delivered successfully and invariant of m
holds, thus w ∈ R(u, destID). u sends GENERICPROBE(u,
destID, {u}, seq) to itself with seq ≥ u.seqs[destID]
periodically for m′ in TIMEOUT(). According to Lemma 8,
a GENERICPROBE(u, destID, Next′, seq) message will
eventually arrive at w. When this happens, w sends a
PROBESUCCESS(destID, seq, w) message to u. Node u will
receive this message and (2) is violated.

7



u wi wi−1 w3 w2 w1 v

i− 1
i− 2 1 0 0

Figure 3. A deterministic search path

IV. THE MULTISKIPGRAPH* PROTOCOL

We now introduce the MULTISKIPGRAPH* protocol which
stabilizes the system to the perfect skip graph topology. Due
to space constraints, we describe only the main differences to
MULTISKIPGRAPH. More details can be found in [8].

In MULTISKIPGRAPH* every node safely delegates neigh-
bors which are in the unknown sets similarly as the BUILD-
LIST+ protocol in [1]. In TIMEOUT(), a node u safely
delegates its neighbor v ∈ RightUnknown (or LeftUnknown)
by sending SAFEINTRODUCE(v, u) to a neighbor w which
is closest to v. When w receives SAFEINTRODUCE(v, u), it
will add v to w.RightUnknown if it did not know v before.
Afterwards, node w sends a SAFEDELETION(v) message back
to node u. Node u removes v from its neighborhood only
when it receives a SAFEDELETION(v) message. This way, the
explicit edge (u, v) is replaced by the explicit edges (u,w) and
(w, v) so that node v is always reachable from node u.

Additionally, whenever a node u receives a
INTROLEVELNODE(v, i) message, it does not add v
immediately as its level-i neighbor, but first initiates a
probing process. A PROBELEVELNODE() message will be
forwarded to u’s neighbor wi on level i − 1, then wi’s
neighbor wi−1 on level i − 2, ..., w3’s neighbor w2 on
level 1, w2’s neighbor w1 on level 0, and w1’s neighbor w0

on level 0. We call this forwarding path the corresponding
deterministic search path (see Figure 3). In a perfect skip
graph, if u and v are level-i neighbors, the deterministic
search path between them must exist and this message will
eventually arrive at v (i.e., w0 = v). Node u adds v as its
level-i neighbor only when such a path exists. This reduces
the creation of illegitimate edges in the topology.

Finally, we use a search protocol called SlowGreedySearch.
SlowGreedySearch tries to skip nodes as much as possible
similar to the greedy search protocol, but still keeps nodes
discovered in the probing process in the set Next. Consider
a node u with right neighbors v1, ..., vn with ascending IDs.
The path from u to a target node w with w.id > u.id has
to use a node in v1, ..., vn. The SlowGreedySearch protocol
first forwards the probe message SLOWGREEDYPROBE (see
the corresponding action in Algorithm 2) along the path via
node vn but keeps other nodes v1, ..., vn−1 in memory (in the
set Next). If there is no path that leads from vn to the target
node w, then the protocol tries the next farthest node vn−1.

u v1 v2 v3 x y w

Figure 4. An example (u.id < v1.id < ... < y.id < w.id)

Action SLOWGREEDYPROBE(src, destID, Prev, Next, seq)
1 if src 6∈ Left ∪ Right then
2 INTRODUCE(src);
3 for ∀w ∈ Prev ∪Next ∧ w 6∈ Left ∪ Right do
4 INTRODUCE(w);
5 if destID == id then
6 send PROBESUCCESS(destID, seq, self ) to src;
7 else
8 if destID < id then
9 N ← {w ∈ Left|w.id ≥ destID ∧ w 6∈ Prev};

10 else
11 N ← {w ∈ Right|w.id ≤ destID ∧ w 6∈ Prev};
12 Next← Next ∪N \ {self};
13 Prev ← Prev ∪ {self};
14 if Next == ∅ then
15 send PROBEFAIL(destID, seq) to src;
16 else
17 v ← argmin {d(u.id, destID)|u ∈ Next};
18 send SLOWGREEDYPROBE(src, destID, Prev, Next,

seq) to v;
Algorithm 2: The SLOWGREEDYPROBE action

If this also fails, it tries vn−2 and so on until Next = ∅. By
using this backtracking approach, a path to w will be found if it
exists. To avoid a ping-pong effect which may cause an infinite
loop, the protocol use a set Prev to keep track of all visited
nodes. Only unvisited nodes will be inserted into the set Next.
For example, the forwarding path for a SLOWGREEDYPROBE
message from node u to the target node w in Figure 4 should
be u→ v3 → y → v2 → v1 → x→ w, in which the message
is forwarded backwards twice (i.e., y → v2 and v2 → v1).

V. EVALUATION

A. Experimental Design

To compare MULTISKIPGRAPH and MULTISKIPGRAPH*,
we implemented a simulator1 in Java which can simulate self-
stabilizing overlay networks. In the following we introduce the
design decisions we made for the simulation.

a) Asynchronous System: we simulate an asynchronous
system by using the multi-threading mechanism in Java, i.e.,
each node is a thread which runs the self-stabilizing protocol
locally. Moreover, message delivery is not in FIFO. Whenever
a message m is created in the simulation, a transmission delay
t (smaller than a predefined maximum value) is randomly
generated, and m will be received by its target node after
time t.

b) Initial Graphs: to compare the two protocols, both
protocols have to operate on the same initial graphs. We use
scale-free graphs as initial graphs for our experiments, because
networks in the real world usually self-organize into scale-
free graphs – a subset of power law graphs [24], [25], [26],
[27]. To generate the scale-free graphs we chose the Barabási-
Albert model [24]. Self-stabilization usually requires that an
initial graph is weakly connected, which is satisfied by scale-
free graphs generated from the Barabási-Albert model. Once a
scale-free graph is generated, each edge is randomly assigned
to be explicit or implicit.

1Available on https://github.com/linghui2016/MultiSkipGraph.
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Figure 5. Comparisons between MULTISKIPGRAPH and MULTISKIPGRAPH*

c) Termination: The simulations terminate whenever the
system achieves the desired topology. For the MULTISKIP-
GRAPH protocol the desired topology is any graph that
contains the perfect skip graph as a subgraph and for the
MULTISKIPGRAPH* protocol exactly the perfect skip graph.
Because each node has only a local view, a central controller
is used to check if the system is stabilized every 200 ms.

d) Metrics: In the following we introduce the metrics we
measured in the simulation:
• Stabilization Time: The duration of the self-stabilization

process starting from an initial graph.
• Used Messages: The number of messages used in the

self-stabilization process starting from an initial graph.
• Degree Growth: The average difference of node degree

in the convergent graph and the initial graph. The node
degree is defined as the number of explicit edges starting
from this node.

• Network Distance: The average length of the shortest
path between two nodes in the network.

• Successful Search Rate: The number of successful
search requests divided by the total number of search
requests during the self-stabilization process.

• Hop Count: The number of intermediate nodes a probe
message for searching passes between source and target.
e) Configuration: We conducted scalability experiments

with network sizes (i.e., number of nodes) from 21(2) to
210(1024) increasing by powers of 2. Unfortunately, our
implementation of the simulator did not scale well for larger
networks. For instance, during the simulation of network size

211 the memory consumption and CPU utilization of the
testing computer were already close to 100%.

Given a network size n, the simulator generates a weakly
connected scale-free graph with parameter 2 (this is the
maximum number of edges to be added in each step according
to the Barabási-Albert model) so that the average degree of the
generated graph is not bigger than 2. With this configuration
we wanted to see how efficient the protocols are stabilizing
their respective topologies if the initial graph is low-connected.
For every network size we conducted 100 experiments and in
each experiment the simulator generates a new initial graph
and executes both protocols on this same graph one after
another: The measured values are an average value of the 100
experiments for each network size.

To evaluate how efficient the search algorithms perform,
we simulated a scenario that randomly generated batches of
search requests from time to time during the self-stabilization
process. After some exploration tests we chose 10 searches
per 100 ms for our experiments.

The experiments were done on a standard computer with a
six-core processor (3.30 GHz) and 8 GB RAM.

B. Evaluation Results
a) Comparison in Stabilization: The log-log plots in

Figure 5 (a)-(d) illustrate the results from experiments without
generating search requests. Figure 5 (a) shows the comparison
of stabilization time between the two protocols. Both curves
show asymptotically similar results: the greater the network
size is, the longer time required for self-stabilization. MULTI-
SKIPGRAPH* generally requires more time for stabilization
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than MULTISKIPGRAPH and both curves show a polylog-
arithmic tendency with growing network size. Similar to
the stabilization time, MULTISKIPGRAPH shows a advantage
(i.e., fewer messages) over MULTISKIPGRAPH* as show in
Figure 5 (b). However, both curves behave almost linear.

Figure 5 (c) shows the comparison in degree growth
between the two protocols. The average degree growth of
MULTISKIPGRAPH is up to two times larger as of MUL-
TISKIPGRAPH* due to the fact that it never removes edges,
which means more local storage for the edges is required in the
convergent state. However, these extra of MULTISKIPGRAPH
can be beneficial for searching. As shown in Figure 5 (d),
the MULTISKIPGRAPH has shorter network distances than
MULTISKIPGRAPH*, which is an indicator for shorter search
paths in the topology.

Consequently, MULTISKIPGRAPH outperforms MULTI-
SKIPGRAPH* in terms of stabilization time, used messages
and network distances, which is traded off by a higher local
memory overhead. We believe that MULTISKIPGRAPH may
have more potential in real-world distributed systems. For
instance, it may bring the system to a convergent state even
much faster than MULTISKIPGRAPH*, since the transmission
time for probing the deterministic search path in MULTISKIP-
GRAPH* can be more costly for larger network sizes and since
the computation usually starts from a graph in which most
parts are already stabilized.

b) Comparison in Searchability: Figure 5 (e) and (f)
are results from experiments with search requests during the
self-stabilization process. Figure 5 (e) shows the comparison
in successful searches between MULTISKIPGRAPH with its
search protocol HybridSearch and MULTISKIPGRAPH* with
SlowGreedySearch. Both protocols prove to be efficient in our
experiments with high successful search rates (≥ 92%) for all
network sizes. MULTISKIPGRAPH* with SlowGreedySearch
shows a better performance than HybridSearch. However, the
difference decreases with increasing network size.

Figure 5 (f) shows the average hop count for success-
ful search requests. In contrast to the successful search
rate, MULTISKIPGRAPH* performs worse than MULTISKIP-
GRAPH since each search request requires more hops on
average. While the MULTISKIPGRAPH protocol requires a
logarithmic number of hops on average in each probing
process for search requests, the curve of MULTISKIPGRAPH*
appears to be linear.

These results show a trade-off between the two protocols.
If one wants to optimize the number of successfully delivered
search requests, MULTISKIPGRAPH* is a preferable choice.
However, if one desires shorter routing path, MULTISKIP-
GRAPH should be chosen.
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